

boto: A Python interface to Amazon Web Services

An integrated interface to current and future infrastructural services
offered by Amazon Web Services [http://aws.amazon.com/].

Currently Supported Services

	Compute
	Elastic Compute Cloud (EC2) – (API Reference)

	Elastic MapReduce (EMR) – (API Reference)

	Auto Scaling – (API Reference)

	Content Delivery
	CloudFront – (API Reference)

	Database
	SimpleDB – (API Reference)

	DynamoDB – (API Reference)

	Relational Data Services (RDS) – (API Reference)

	Deployment and Management
	CloudFormation – (API Reference)

	Identity & Access
	Identity and Access Management (IAM) – (API Reference)

	Messaging
	Simple Queue Service (SQS) – (API Reference)

	Simple Notification Service (SNS) – (API Reference)

	Simple Email Service (SES) – (API Reference)

	Monitoring
	CloudWatch – (API Reference)

	Networking
	Route 53 – (API Reference)

	Virtual Private Cloud (VPC) – (API Reference)

	Elastic Load Balancing (ELB) – (API Reference)

	Payments & Billing
	Flexible Payments Service (FPS) – (API Reference)

	Storage
	Simple Storage Service (S3) – (API Reference)

	Workforce
	Mechanical Turk – (API Reference)

Additional Resources

	Boto Config Tutorial

	Boto Source Repository [https://github.com/boto/boto]

	Boto Issue Tracker [https://github.com/boto/boto/issues]

	Boto Twitter [http://twitter.com/pythonboto]

	Follow Mitch on Twitter [http://twitter.com/garnaat]

	Join our IRC channel [http://webchat.freenode.net/?channels=boto] (#boto on FreeNode).

Indices and tables

	Index

	Module Index

	Search Page

An Introduction to boto’s EC2 interface

This tutorial focuses on the boto interface to the Elastic Compute Cloud
from Amazon Web Services. This tutorial assumes that you have already
downloaded and installed boto.

Creating a Connection

The first step in accessing EC2 is to create a connection to the service.
There are two ways to do this in boto. The first is:

>>> from boto.ec2.connection import EC2Connection
>>> conn = EC2Connection('<AWS_ACCESS_KEY_ID>', '<AWS_SECRET_ACCESS_KEY>')

At this point the variable conn will point to an EC2Connection object. In
this example, the AWS access key and AWS secret key are passed in to the
method explicitely. Alternatively, you can set the boto config environment variables
and then call the constructor without any arguments, like this:

>>> conn = EC2Connection()

There is also a shortcut function in the boto package, called connect_ec2
that may provide a slightly easier means of creating a connection:

>>> import boto
>>> conn = boto.connect_ec2()

In either case, conn will point to an EC2Connection object which we will
use throughout the remainder of this tutorial.

Launching Instances

Possibly, the most important and common task you’ll use EC2 for is to launch,
stop and terminate instances. In its most primitive form, you can launch an
instance as follows:

>>> conn.run_instances('<ami-image-id>')

This will launch an instance in the specified region with the default parameters.
You will not be able to SSH into this machine, as it doesn’t have a security
group set. See EC2 Security Groups for details on creating one.

Now, let’s say that you already have a key pair, want a specific type of
instance, and you have your security group all setup.
In this case we can use the keyword arguments to accomplish that:

>>> conn.run_instances(
 '<ami-image-id>',
 key_name='myKey',
 instance_type='c1.xlarge',
 security_groups=['your-security-group-here'])

The main caveat with the above call is that it is possible to request an
instance type that is not compatible with the provided AMI (for example, the
instance was created for a 64-bit instance and you choose a m1.small instance_type).
For more details on the plethora of possible keyword parameters, be sure to
check out boto’s EC2 API reference.

Stopping Instances

Once you have your instances up and running, you might wish to shut them down
if they’re not in use. Please note that this will only de-allocate virtual
hardware resources (as well as instance store drives), but won’t destroy your
EBS volumes – this means you’ll pay nominal provisioned EBS storage fees
even if your instance is stopped. To do this, you can do so as follows:

>>> conn.stop_instances(instance_ids=['instance-id-1','instance-id-2', ...])

This will request a ‘graceful’ stop of each of the specified instances. If you
wish to request the equivalent of unplugging your instance(s), simply add
force=True keyword argument to the call above. Please note that stop
instance is not allowed with Spot instances.

Terminating Instances

Once you are completely done with your instance and wish to surrender both
virtual hardware, root EBS volume and all other underlying components
you can request instance termination. To do so you can use the call bellow:

>>> conn.terminate_instances(instance_ids=['instance-id-1','instance-id-2', ...])

Please use with care since once you request termination for an instance there
is no turning back.

EC2 Security Groups

Amazon defines a security group as:

	“A security group is a named collection of access rules. These access rules

	specify which ingress, i.e. incoming, network traffic should be delivered
to your instance.”

To get a listing of all currently defined security groups:

>>> rs = conn.get_all_security_groups()
>>> print rs
[SecurityGroup:appserver, SecurityGroup:default, SecurityGroup:vnc, SecurityGroup:webserver]

Each security group can have an arbitrary number of rules which represent
different network ports which are being enabled. To find the rules for a
particular security group, use the rules attribute:

>>> sg = rs[1]
>>> sg.name
u'default'
>>> sg.rules
[IPPermissions:tcp(0-65535),
 IPPermissions:udp(0-65535),
 IPPermissions:icmp(-1--1),
 IPPermissions:tcp(22-22),
 IPPermissions:tcp(80-80)]

In addition to listing the available security groups you can also create
a new security group. I’ll follow through the “Three Tier Web Service”
example included in the EC2 Developer’s Guide for an example of how to
create security groups and add rules to them.

First, let’s create a group for our Apache web servers that allows HTTP
access to the world:

>>> web = conn.create_security_group('apache', 'Our Apache Group')
>>> web
SecurityGroup:apache
>>> web.authorize('tcp', 80, 80, '0.0.0.0/0')
True

The first argument is the ip protocol which can be one of; tcp, udp or icmp.
The second argument is the FromPort or the beginning port in the range, the
third argument is the ToPort or the ending port in the range and the last
argument is the CIDR IP range to authorize access to.

Next we create another group for the app servers:

>>> app = conn.create_security_group('appserver', 'The application tier')

We then want to grant access between the web server group and the app
server group. So, rather than specifying an IP address as we did in the
last example, this time we will specify another SecurityGroup object.:

>>> app.authorize(src_group=web)
True

Now, to verify that the web group now has access to the app servers, we want to
temporarily allow SSH access to the web servers from our computer. Let’s
say that our IP address is 192.168.1.130 as it is in the EC2 Developer
Guide. To enable that access:

>>> web.authorize(ip_protocol='tcp', from_port=22, to_port=22, cidr_ip='192.168.1.130/32')
True

Now that this access is authorized, we could ssh into an instance running in
the web group and then try to telnet to specific ports on servers in the
appserver group, as shown in the EC2 Developer’s Guide. When this testing is
complete, we would want to revoke SSH access to the web server group, like this:

>>> web.rules
[IPPermissions:tcp(80-80),
 IPPermissions:tcp(22-22)]
>>> web.revoke('tcp', 22, 22, cidr_ip='192.168.1.130/32')
True
>>> web.rules
[IPPermissions:tcp(80-80)]

EC2

boto.ec2

This module provides an interface to the Elastic Compute Cloud (EC2)
service from AWS.

	
boto.ec2.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.ec2.connection.EC2Connection.
Any additional parameters after the region_name are passed on to
the connect method of the region object.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.ec2.connection.EC2Connection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.ec2.get_region(region_name, **kw_params)

	Find and return a boto.ec2.regioninfo.RegionInfo object
given a region name.

	Type:	str

	Param:	The name of the region.

	Return type:	boto.ec2.regioninfo.RegionInfo

	Returns:	The RegionInfo object for the given region or None if
an invalid region name is provided.

	
boto.ec2.regions(**kw_params)

	Get all available regions for the EC2 service.
You may pass any of the arguments accepted by the EC2Connection
object’s constructor as keyword arguments and they will be
passed along to the EC2Connection object.

	Return type:	list

	Returns:	A list of boto.ec2.regioninfo.RegionInfo

boto.ec2.address

Represents an EC2 Elastic IP Address

	
class boto.ec2.address.Address(connection=None, public_ip=None, instance_id=None)

	
	
associate(instance_id)

	

	
delete()

	

	
disassociate()

	

	
endElement(name, value, connection)

	

	
release()

	

boto.ec2.autoscale

See the Auto Scaling Reference.

boto.ec2.buyreservation

	
class boto.ec2.buyreservation.BuyReservation

	
	
get(params)

	

	
get_instance_type(params)

	

	
get_quantity(params)

	

	
get_region(params)

	

	
get_zone(params)

	

boto.ec2.cloudwatch

See the CloudWatch Reference.

boto.ec2.connection

Represents a connection to the EC2 service.

	
class boto.ec2.connection.EC2Connection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, host=None, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', api_version=None, security_token=None)

	Init method to create a new connection to EC2.

	
APIVersion = '2011-12-15'

	

	
DefaultRegionEndpoint = 'ec2.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of EC2ResponseError

	
allocate_address(domain=None)

	Allocate a new Elastic IP address and associate it with your account.

	Return type:	boto.ec2.address.Address

	Returns:	The newly allocated Address

	
associate_address(instance_id, public_ip=None, allocation_id=None)

	Associate an Elastic IP address with a currently running instance.
This requires one of public_ip or allocation_id depending
on if you’re associating a VPC address or a plain EC2 address.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the instance

	public_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The public IP address for EC2 based allocations.

	allocation_id (string [https://docs.python.org/2/library/string.html#module-string]) – The allocation ID for a VPC-based elastic IP.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
attach_network_interface(network_interface_id, instance_id, device_index)

	Attaches a network interface to an instance.

	Parameters:	
	network_interface_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the network interface to attach.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the instance that will be attached
to the network interface.

	device_index (int [https://docs.python.org/2/library/functions.html#int]) – The index of the device for the network
interface attachment on the instance.

	
attach_volume(volume_id, instance_id, device)

	Attach an EBS volume to an EC2 instance.

	Parameters:	
	volume_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EBS volume to be attached.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EC2 instance to which it will
be attached.

	device (str [https://docs.python.org/2/library/functions.html#str]) – The device on the instance through which the
volume will be exposted (e.g. /dev/sdh)

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
authorize_security_group(group_name=None, src_security_group_name=None, src_security_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, group_id=None, src_security_group_group_id=None)

	Add a new rule to an existing security group.
You need to pass in either src_security_group_name and
src_security_group_owner_id OR ip_protocol, from_port, to_port,
and cidr_ip. In other words, either you are authorizing another
group or you are authorizing some ip-based rule.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are adding
the rule to.

	src_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are
granting access to.

	src_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the security
group you are granting access to.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are enabling

	to_port (int [https://docs.python.org/2/library/functions.html#int]) – The ending port number you are enabling

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are providing access to.
See http://goo.gl/Yj5QC

	group_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the EC2 or VPC security group to modify.
This is required for VPC security groups and
can be used instead of group_name for EC2
security groups.

	group_id – ID of the EC2 or VPC source security group.
This is required for VPC security groups and
can be used instead of group_name for EC2
security groups.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
authorize_security_group_deprecated(group_name, src_security_group_name=None, src_security_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None)

	
	NOTE: This method uses the old-style request parameters

	that did not allow a port to be specified when
authorizing a group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are adding
the rule to.

	src_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are
granting access to.

	src_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the security
group you are granting access to.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are enabling

	to_port (string [https://docs.python.org/2/library/string.html#module-string]) – The ending port number you are enabling

	to_port – The CIDR block you are providing access to.
See http://goo.gl/Yj5QC

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
authorize_security_group_egress(group_id, ip_protocol, from_port=None, to_port=None, src_group_id=None, cidr_ip=None)

	The action adds one or more egress rules to a VPC security
group. Specifically, this action permits instances in a
security group to send traffic to one or more destination
CIDR IP address ranges, or to one or more destination
security groups in the same VPC.

	
build_filter_params(params, filters)

	

	
build_tag_param_list(params, tags)

	

	
bundle_instance(instance_id, s3_bucket, s3_prefix, s3_upload_policy)

	Bundle Windows instance.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance id

	s3_bucket (string [https://docs.python.org/2/library/string.html#module-string]) – The bucket in which the AMI should be stored.

	s3_prefix (string [https://docs.python.org/2/library/string.html#module-string]) – The beginning of the file name for the AMI.

	s3_upload_policy (string [https://docs.python.org/2/library/string.html#module-string]) – Base64 encoded policy that specifies condition
and permissions for Amazon EC2 to upload the
user’s image into Amazon S3.

	
cancel_bundle_task(bundle_id)

	Cancel a previously submitted bundle task

	Parameters:	bundle_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier of the bundle task to cancel.

	
cancel_spot_instance_requests(request_ids)

	Cancel the specified Spot Instance Requests.

	Parameters:	request_ids (list) – A list of strings of the Request IDs to terminate

	Return type:	list

	Returns:	A list of the instances terminated

	
confirm_product_instance(product_code, instance_id)

	

	
create_image(instance_id, name, description=None, no_reboot=False)

	Will create an AMI from the instance in the running or stopped
state.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – the ID of the instance to image.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new image

	description (string [https://docs.python.org/2/library/string.html#module-string]) – An optional human-readable string describing
the contents and purpose of the AMI.

	no_reboot (bool [https://docs.python.org/2/library/functions.html#bool]) – An optional flag indicating that the bundling process
should not attempt to shutdown the instance before
bundling. If this flag is True, the responsibility
of maintaining file system integrity is left to the
owner of the instance.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The new image id

	
create_key_pair(key_name)

	Create a new key pair for your account.
This will create the key pair within the region you
are currently connected to.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new keypair

	Return type:	boto.ec2.keypair.KeyPair

	Returns:	The newly created boto.ec2.keypair.KeyPair.
The material attribute of the new KeyPair object
will contain the the unencrypted PEM encoded RSA private key.

	
create_network_interface(subnet_id, private_ip_address=None, description=None, groups=None)

	Creates a network interface in the specified subnet.

	Parameters:	
	subnet_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the subnet to associate with the
network interface.

	private_ip_address (str [https://docs.python.org/2/library/functions.html#str]) – The private IP address of the
network interface. If not supplied, one will be chosen
for you.

	description (str [https://docs.python.org/2/library/functions.html#str]) – The description of the network interface.

	groups (list) – Lists the groups for use by the network interface.
This can be either a list of group ID’s or a list of
boto.ec2.securitygroup.SecurityGroup objects.

	Return type:	boto.ec2.networkinterface.NetworkInterface

	Returns:	The newly created network interface.

	
create_placement_group(name, strategy='cluster')

	Create a new placement group for your account.
This will create the placement group within the region you
are currently connected to.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new placement group

	strategy (string [https://docs.python.org/2/library/string.html#module-string]) – The placement strategy of the new placement group.
Currently, the only acceptable value is “cluster”.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
create_security_group(name, description, vpc_id=None)

	Create a new security group for your account.
This will create the security group within the region you
are currently connected to.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new security group

	description (string [https://docs.python.org/2/library/string.html#module-string]) – The description of the new security group

	vpc_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the VPC to create the security group in,
if any.

	Return type:	boto.ec2.securitygroup.SecurityGroup

	Returns:	The newly created boto.ec2.keypair.KeyPair.

	
create_snapshot(volume_id, description=None)

	Create a snapshot of an existing EBS Volume.

	Parameters:	
	volume_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the volume to be snapshot’ed

	description (str [https://docs.python.org/2/library/functions.html#str]) – A description of the snapshot.
Limited to 255 characters.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
create_spot_datafeed_subscription(bucket, prefix)

	Create a spot instance datafeed subscription for this account.

	Parameters:	
	bucket (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The name of the bucket where spot instance data
will be written. The account issuing this request
must have FULL_CONTROL access to the bucket
specified in the request.

	prefix (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – An optional prefix that will be pre-pended to all
data files written to the bucket.

	Return type:	boto.ec2.spotdatafeedsubscription.SpotDatafeedSubscription

	Returns:	The datafeed subscription object or None

	
create_tags(resource_ids, tags)

	Create new metadata tags for the specified resource ids.

	Parameters:	
	resource_ids (list) – List of strings

	tags (dict) – A dictionary containing the name/value pairs.
If you want to create only a tag name, the
value for that tag should be the empty string
(e.g. ‘’).

	
create_volume(size, zone, snapshot=None)

	Create a new EBS Volume.

	Parameters:	
	size (int [https://docs.python.org/2/library/functions.html#int]) – The size of the new volume, in GiB

	zone (string or boto.ec2.zone.Zone) – The availability zone in which the Volume will be created.

	snapshot (string or boto.ec2.snapshot.Snapshot) – The snapshot from which the new Volume will be created.

	
delete_key_pair(key_name)

	Delete a key pair from your account.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the keypair to delete

	
delete_network_interface(network_interface_id)

	Delete the specified network interface.

	Parameters:	network_interface_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the network interface to delete.

	
delete_placement_group(name)

	Delete a placement group from your account.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the keypair to delete

	
delete_security_group(name=None, group_id=None)

	Delete a security group from your account.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group to delete.

	group_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the security group to delete within
a VPC.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
delete_snapshot(snapshot_id)

	

	
delete_spot_datafeed_subscription()

	Delete the current spot instance data feed subscription
associated with this account

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_tags(resource_ids, tags)

	Delete metadata tags for the specified resource ids.

	Parameters:	
	resource_ids (list) – List of strings

	tags (dict or list) – Either a dictionary containing name/value pairs
or a list containing just tag names.
If you pass in a dictionary, the values must
match the actual tag values or the tag will
not be deleted. If you pass in a value of None
for the tag value, all tags with that name will
be deleted.

	
delete_volume(volume_id)

	Delete an EBS volume.

	Parameters:	volume_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the volume to be delete.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
deregister_image(image_id, delete_snapshot=False)

	Unregister an AMI.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – the ID of the Image to unregister

	delete_snapshot (bool [https://docs.python.org/2/library/functions.html#bool]) – Set to True if we should delete the
snapshot associated with an EBS volume
mounted at /dev/sda1

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
detach_network_interface(network_interface_id, force=False)

	Detaches a network interface from an instance.

	Parameters:	
	network_interface_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the network interface to detach.

	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Set to true to force a detachment.

	
detach_volume(volume_id, instance_id=None, device=None, force=False)

	Detach an EBS volume from an EC2 instance.

	Parameters:	
	volume_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EBS volume to be attached.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EC2 instance from which it will
be detached.

	device (str [https://docs.python.org/2/library/functions.html#str]) – The device on the instance through which the
volume is exposted (e.g. /dev/sdh)

	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Forces detachment if the previous detachment attempt did
not occur cleanly. This option can lead to data loss or
a corrupted file system. Use this option only as a last
resort to detach a volume from a failed instance. The
instance will not have an opportunity to flush file system
caches nor file system meta data. If you use this option,
you must perform file system check and repair procedures.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
disassociate_address(public_ip=None, association_id=None)

	Disassociate an Elastic IP address from a currently running instance.

	Parameters:	
	public_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The public IP address for EC2 elastic IPs.

	association_id (string [https://docs.python.org/2/library/string.html#module-string]) – The association ID for a VPC based elastic ip.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
get_all_addresses(addresses=None, filters=None, allocation_ids=None)

	Get all EIP’s associated with the current credentials.

	Parameters:	
	addresses (list) – Optional list of addresses. If this list is present,
only the Addresses associated with these addresses
will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	allocation_ids (list) – Optional list of allocation IDs. If this list is
present, only the Addresses associated with the given
allocation IDs will be returned.

	Return type:	list of boto.ec2.address.Address

	Returns:	The requested Address objects

	
get_all_bundle_tasks(bundle_ids=None, filters=None)

	Retrieve current bundling tasks. If no bundle id is specified, all
tasks are retrieved.

	Parameters:	
	bundle_ids (list) – A list of strings containing identifiers for
previously created bundling tasks.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	
get_all_images(image_ids=None, owners=None, executable_by=None, filters=None)

	Retrieve all the EC2 images available on your account.

	Parameters:	
	image_ids (list) – A list of strings with the image IDs wanted

	owners (list) – A list of owner IDs

	executable_by (list) – Returns AMIs for which the specified
user ID has explicit launch permissions

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.image.Image

	
get_all_instance_status(instance_ids=None, max_results=None, next_token=None, filters=None)

	Retrieve all the instances in your account scheduled for maintenance.

	Parameters:	
	instance_ids (list) – A list of strings of instance IDs

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of paginated instance
items per response.

	next_token (str [https://docs.python.org/2/library/functions.html#str]) – A string specifying the next paginated set
of results to return.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of instances that have maintenance scheduled.

	
get_all_instances(instance_ids=None, filters=None)

	Retrieve all the instances associated with your account.

	Parameters:	
	instance_ids (list) – A list of strings of instance IDs

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.instance.Reservation

	
get_all_kernels(kernel_ids=None, owners=None)

	Retrieve all the EC2 kernels available on your account.
Constructs a filter to allow the processing to happen server side.

	Parameters:	
	kernel_ids (list) – A list of strings with the image IDs wanted

	owners (list) – A list of owner IDs

	Return type:	list

	Returns:	A list of boto.ec2.image.Image

	
get_all_key_pairs(keynames=None, filters=None)

	Get all key pairs associated with your account.

	Parameters:	
	keynames (list) – A list of the names of keypairs to retrieve.
If not provided, all key pairs will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.keypair.KeyPair

	
get_all_network_interfaces(filters=None)

	Retrieve all of the Elastic Network Interfaces (ENI’s)
associated with your account.

	Parameters:	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.networkinterface.NetworkInterface

	
get_all_placement_groups(groupnames=None, filters=None)

	Get all placement groups associated with your account in a region.

	Parameters:	
	groupnames (list) – A list of the names of placement groups to retrieve.
If not provided, all placement groups will be
returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.placementgroup.PlacementGroup

	
get_all_ramdisks(ramdisk_ids=None, owners=None)

	Retrieve all the EC2 ramdisks available on your account.
Constructs a filter to allow the processing to happen server side.

	Parameters:	
	ramdisk_ids (list) – A list of strings with the image IDs wanted

	owners (list) – A list of owner IDs

	Return type:	list

	Returns:	A list of boto.ec2.image.Image

	
get_all_regions(region_names=None, filters=None)

	Get all available regions for the EC2 service.

	Parameters:	
	region_names (list of str) – Names of regions to limit output

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.regioninfo.RegionInfo

	
get_all_reserved_instances(reserved_instances_id=None, filters=None)

	Describes Reserved Instance offerings that are available for purchase.

	Parameters:	
	reserved_instance_ids (list) – A list of the reserved instance ids that
will be returned. If not provided, all
reserved instances will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.reservedinstance.ReservedInstance

	
get_all_reserved_instances_offerings(reserved_instances_id=None, instance_type=None, availability_zone=None, product_description=None, filters=None)

	Describes Reserved Instance offerings that are available for purchase.

	Parameters:	
	reserved_instances_id (str [https://docs.python.org/2/library/functions.html#str]) – Displays Reserved Instances with the
specified offering IDs.

	instance_type (str [https://docs.python.org/2/library/functions.html#str]) – Displays Reserved Instances of the specified
instance type.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Displays Reserved Instances within the
specified Availability Zone.

	product_description (str [https://docs.python.org/2/library/functions.html#str]) – Displays Reserved Instances with the
specified product description.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.reservedinstance.ReservedInstancesOffering

	
get_all_security_groups(groupnames=None, group_ids=None, filters=None)

	Get all security groups associated with your account in a region.

	Parameters:	
	groupnames (list) – A list of the names of security groups to retrieve.
If not provided, all security groups will be
returned.

	group_ids (list) – A list of IDs of security groups to retrieve for
security groups within a VPC.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.securitygroup.SecurityGroup

	
get_all_snapshots(snapshot_ids=None, owner=None, restorable_by=None, filters=None)

	Get all EBS Snapshots associated with the current credentials.

	Parameters:	
	snapshot_ids (list) – Optional list of snapshot ids. If this list is
present, only the Snapshots associated with
these snapshot ids will be returned.

	owner (str [https://docs.python.org/2/library/functions.html#str]) – If present, only the snapshots owned by the specified user
will be returned. Valid values are:

	self

	amazon

	AWS Account ID

	restorable_by (str [https://docs.python.org/2/library/functions.html#str]) – If present, only the snapshots that are restorable
by the specified account id will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list of boto.ec2.snapshot.Snapshot

	Returns:	The requested Snapshot objects

	
get_all_spot_instance_requests(request_ids=None, filters=None)

	Retrieve all the spot instances requests associated with your account.

	Parameters:	
	request_ids (list) – A list of strings of spot instance request IDs

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of
boto.ec2.spotinstancerequest.SpotInstanceRequest

	
get_all_tags(filters=None)

	Retrieve all the metadata tags associated with your account.

	Parameters:	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	dict

	Returns:	A dictionary containing metadata tags

	
get_all_volumes(volume_ids=None, filters=None)

	Get all Volumes associated with the current credentials.

	Parameters:	
	volume_ids (list) – Optional list of volume ids. If this list
is present, only the volumes associated with
these volume ids will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list of boto.ec2.volume.Volume

	Returns:	The requested Volume objects

	
get_all_zones(zones=None, filters=None)

	Get all Availability Zones associated with the current region.

	Parameters:	
	zones (list) – Optional list of zones. If this list is present,
only the Zones associated with these zone names
will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list of boto.ec2.zone.Zone

	Returns:	The requested Zone objects

	
get_console_output(instance_id)

	Retrieves the console output for the specified instance.

	Parameters:	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance ID of a running instance on the cloud.

	Return type:	boto.ec2.instance.ConsoleOutput

	Returns:	The console output as a ConsoleOutput object

	
get_image(image_id)

	Shortcut method to retrieve a specific image (AMI).

	Parameters:	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – the ID of the Image to retrieve

	Return type:	boto.ec2.image.Image

	Returns:	The EC2 Image specified or None if the image is not found

	
get_image_attribute(image_id, attribute='launchPermission')

	Gets an attribute from an image.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – The Amazon image id for which you want info about

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you need information about.
Valid choices are:
* launchPermission
* productCodes
* blockDeviceMapping

	Return type:	boto.ec2.image.ImageAttribute

	Returns:	An ImageAttribute object representing the value of the
attribute requested

	
get_instance_attribute(instance_id, attribute)

	Gets an attribute from an instance.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The Amazon id of the instance

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you need information about
Valid choices are:

	instanceType|kernel|ramdisk|userData|

	disableApiTermination|

	instanceInitiatedShutdownBehavior|

	rootDeviceName|blockDeviceMapping

	Return type:	boto.ec2.image.InstanceAttribute

	Returns:	An InstanceAttribute object representing the value of the
attribute requested

	
get_key_pair(keyname)

	Convenience method to retrieve a specific keypair (KeyPair).

	Parameters:	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – the ID of the Image to retrieve

	Return type:	boto.ec2.keypair.KeyPair

	Returns:	The KeyPair specified or None if it is not found

	
get_params()

	Returns a dictionary containing the value of of all of the keyword
arguments passed when constructing this connection.

	
get_password_data(instance_id)

	Get encrypted administrator password for a Windows instance.

	Parameters:	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier of the instance to retrieve the
password for.

	
get_snapshot_attribute(snapshot_id, attribute='createVolumePermission')

	Get information about an attribute of a snapshot. Only one attribute
can be specified per call.

	Parameters:	
	snapshot_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the snapshot.

	attribute (str [https://docs.python.org/2/library/functions.html#str]) – The requested attribute. Valid values are:

	createVolumePermission

	Return type:	list of boto.ec2.snapshotattribute.SnapshotAttribute

	Returns:	The requested Snapshot attribute

	
get_spot_datafeed_subscription()

	Return the current spot instance data feed subscription
associated with this account, if any.

	Return type:	boto.ec2.spotdatafeedsubscription.SpotDatafeedSubscription

	Returns:	The datafeed subscription object or None

	
get_spot_price_history(start_time=None, end_time=None, instance_type=None, product_description=None, availability_zone=None)

	Retrieve the recent history of spot instances pricing.

	Parameters:	
	start_time (str [https://docs.python.org/2/library/functions.html#str]) – An indication of how far back to provide price
changes for. An ISO8601 DateTime string.

	end_time (str [https://docs.python.org/2/library/functions.html#str]) – An indication of how far forward to provide price
changes for. An ISO8601 DateTime string.

	instance_type (str [https://docs.python.org/2/library/functions.html#str]) – Filter responses to a particular instance type.

	product_description (str [https://docs.python.org/2/library/functions.html#str]) – Filter responses to a particular platform.
Valid values are currently: “Linux/UNIX”,
“SUSE Linux”, and “Windows”

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – The availability zone for which prices
should be returned

	Return type:	list

	Returns:	A list tuples containing price and timestamp.

	
import_key_pair(key_name, public_key_material)

	mports the public key from an RSA key pair that you created
with a third-party tool.

Supported formats:

	OpenSSH public key format (e.g., the format
in ~/.ssh/authorized_keys)

	Base64 encoded DER format

	SSH public key file format as specified in RFC4716

DSA keys are not supported. Make sure your key generator is
set up to create RSA keys.

Supported lengths: 1024, 2048, and 4096.

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new keypair

	public_key_material (string [https://docs.python.org/2/library/string.html#module-string]) – The public key. You must base64 encode
the public key material before sending
it to AWS.

	Return type:	boto.ec2.keypair.KeyPair

	Returns:	The newly created boto.ec2.keypair.KeyPair.
The material attribute of the new KeyPair object
will contain the the unencrypted PEM encoded RSA private key.

	
modify_image_attribute(image_id, attribute='launchPermission', operation='add', user_ids=None, groups=None, product_codes=None)

	Changes an attribute of an image.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – The image id you wish to change

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you wish to change

	operation (string [https://docs.python.org/2/library/string.html#module-string]) – Either add or remove (this is required for changing
launchPermissions)

	user_ids (list) – The Amazon IDs of users to add/remove attributes

	groups (list) – The groups to add/remove attributes

	product_codes (list) – Amazon DevPay product code. Currently only one
product code can be associated with an AMI. Once
set, the product code cannot be changed or reset.

	
modify_instance_attribute(instance_id, attribute, value)

	Changes an attribute of an instance

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance id you wish to change

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you wish to change.

	AttributeName - Expected value (default)

	instanceType - A valid instance type (m1.small)

	kernel - Kernel ID (None)

	ramdisk - Ramdisk ID (None)

	userData - Base64 encoded String (None)

	disableApiTermination - Boolean (true)

	instanceInitiatedShutdownBehavior - stop|terminate

	rootDeviceName - device name (None)

	value (string [https://docs.python.org/2/library/string.html#module-string]) – The new value for the attribute

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
modify_snapshot_attribute(snapshot_id, attribute='createVolumePermission', operation='add', user_ids=None, groups=None)

	Changes an attribute of an image.

	Parameters:	
	snapshot_id (string [https://docs.python.org/2/library/string.html#module-string]) – The snapshot id you wish to change

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you wish to change. Valid values are:
createVolumePermission

	operation (string [https://docs.python.org/2/library/string.html#module-string]) – Either add or remove (this is required for changing
snapshot ermissions)

	user_ids (list) – The Amazon IDs of users to add/remove attributes

	groups (list) – The groups to add/remove attributes. The only valid
value at this time is ‘all’.

	
monitor_instance(instance_id)

	Deprecated Version, maintained for backward compatibility.
Enable CloudWatch monitoring for the supplied instance.

	Parameters:	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance id

	Return type:	list

	Returns:	A list of boto.ec2.instanceinfo.InstanceInfo

	
monitor_instances(instance_ids)

	Enable CloudWatch monitoring for the supplied instances.

	Parameters:	instance_id (list of strings) – The instance ids

	Return type:	list

	Returns:	A list of boto.ec2.instanceinfo.InstanceInfo

	
purchase_reserved_instance_offering(reserved_instances_offering_id, instance_count=1)

	Purchase a Reserved Instance for use with your account.
** CAUTION **
This request can result in large amounts of money being charged to your
AWS account. Use with caution!

	Parameters:	
	reserved_instances_offering_id (string [https://docs.python.org/2/library/string.html#module-string]) – The offering ID of the Reserved
Instance to purchase

	instance_count (int [https://docs.python.org/2/library/functions.html#int]) – The number of Reserved Instances to purchase.
Default value is 1.

	Return type:	boto.ec2.reservedinstance.ReservedInstance

	Returns:	The newly created Reserved Instance

	
reboot_instances(instance_ids=None)

	Reboot the specified instances.

	Parameters:	instance_ids (list) – The instances to terminate and reboot

	
register_image(name=None, description=None, image_location=None, architecture=None, kernel_id=None, ramdisk_id=None, root_device_name=None, block_device_map=None)

	Register an image.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the AMI. Valid only for EBS-based images.

	description (string [https://docs.python.org/2/library/string.html#module-string]) – The description of the AMI.

	image_location (string [https://docs.python.org/2/library/string.html#module-string]) – Full path to your AMI manifest in
Amazon S3 storage.
Only used for S3-based AMI’s.

	architecture (string [https://docs.python.org/2/library/string.html#module-string]) – The architecture of the AMI. Valid choices are:
i386 | x86_64

	kernel_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the kernel with which to launch
the instances

	root_device_name (string [https://docs.python.org/2/library/string.html#module-string]) – The root device name (e.g. /dev/sdh)

	block_device_map (boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping data structure
describing the EBS volumes associated
with the Image.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The new image id

	
release_address(public_ip=None, allocation_id=None)

	Free up an Elastic IP address.

	Parameters:	
	public_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The public IP address for EC2 elastic IPs.

	allocation_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID for VPC elastic IPs.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
request_spot_instances(price, image_id, count=1, type='one-time', valid_from=None, valid_until=None, launch_group=None, availability_zone_group=None, key_name=None, security_groups=None, user_data=None, addressing_type=None, instance_type='m1.small', placement=None, kernel_id=None, ramdisk_id=None, monitoring_enabled=False, subnet_id=None, block_device_map=None)

	Request instances on the spot market at a particular price.

	Parameters:	
	price (str [https://docs.python.org/2/library/functions.html#str]) – The maximum price of your bid

	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the image to run

	count (int [https://docs.python.org/2/library/functions.html#int]) – The of instances to requested

	type (str [https://docs.python.org/2/library/functions.html#str]) – Type of request. Can be ‘one-time’ or ‘persistent’.
Default is one-time.

	valid_from (str [https://docs.python.org/2/library/functions.html#str]) – Start date of the request. An ISO8601 time string.

	valid_until (str [https://docs.python.org/2/library/functions.html#str]) – End date of the request. An ISO8601 time string.

	launch_group (str [https://docs.python.org/2/library/functions.html#str]) – If supplied, all requests will be fulfilled
as a group.

	availability_zone_group (str [https://docs.python.org/2/library/functions.html#str]) – If supplied, all requests will be
fulfilled within a single
availability zone.

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key pair with which to launch instances

	security_groups (list of strings) – The names of the security groups with which to
associate instances

	user_data (string [https://docs.python.org/2/library/string.html#module-string]) – The user data passed to the launched instances

	instance_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of instance to run:

	m1.small

	m1.large

	m1.xlarge

	c1.medium

	c1.xlarge

	m2.xlarge

	m2.2xlarge

	m2.4xlarge

	cc1.4xlarge

	t1.micro

	placement (string [https://docs.python.org/2/library/string.html#module-string]) – The availability zone in which to launch the instances

	kernel_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the kernel with which to launch the
instances

	ramdisk_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the RAM disk with which to launch the
instances

	monitoring_enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Enable CloudWatch monitoring on the instance.

	subnet_id (string [https://docs.python.org/2/library/string.html#module-string]) – The subnet ID within which to launch the instances
for VPC.

	block_device_map (boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping data structure
describing the EBS volumes associated
with the Image.

	Return type:	Reservation

	Returns:	The boto.ec2.spotinstancerequest.SpotInstanceRequest
associated with the request for machines

	
reset_image_attribute(image_id, attribute='launchPermission')

	Resets an attribute of an AMI to its default value.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the AMI for which an attribute will be described

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute to reset

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
reset_instance_attribute(instance_id, attribute)

	Resets an attribute of an instance to its default value.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the instance

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute to reset. Valid values are:
kernel|ramdisk

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
reset_snapshot_attribute(snapshot_id, attribute='createVolumePermission')

	Resets an attribute of a snapshot to its default value.

	Parameters:	
	snapshot_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the snapshot

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute to reset

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
revoke_security_group(group_name=None, src_security_group_name=None, src_security_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, group_id=None, src_security_group_group_id=None)

	Remove an existing rule from an existing security group.
You need to pass in either src_security_group_name and
src_security_group_owner_id OR ip_protocol, from_port, to_port,
and cidr_ip. In other words, either you are revoking another
group or you are revoking some ip-based rule.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are removing
the rule from.

	src_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are
revoking access to.

	src_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the security
group you are revoking access to.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are disabling

	to_port (int [https://docs.python.org/2/library/functions.html#int]) – The ending port number you are disabling

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are revoking access to.
See http://goo.gl/Yj5QC

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
revoke_security_group_deprecated(group_name, src_security_group_name=None, src_security_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None)

	
	NOTE: This method uses the old-style request parameters

	that did not allow a port to be specified when
authorizing a group.

Remove an existing rule from an existing security group.
You need to pass in either src_security_group_name and
src_security_group_owner_id OR ip_protocol, from_port, to_port,
and cidr_ip. In other words, either you are revoking another
group or you are revoking some ip-based rule.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are removing
the rule from.

	src_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are
revoking access to.

	src_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the security
group you are revoking access to.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are disabling

	to_port (string [https://docs.python.org/2/library/string.html#module-string]) – The ending port number you are disabling

	to_port – The CIDR block you are revoking access to.
http://goo.gl/Yj5QC

	group_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the EC2 or VPC security group to modify.
This is required for VPC security groups and
can be used instead of group_name for EC2
security groups.

	group_id – ID of the EC2 or VPC source security group.
This is required for VPC security groups and
can be used instead of group_name for EC2
security groups.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
revoke_security_group_egress(group_id, ip_protocol, from_port=None, to_port=None, src_group_id=None, cidr_ip=None)

	Remove an existing egress rule from an existing VPC security group.
You need to pass in an ip_protocol, from_port and to_port range only
if the protocol you are using is port-based. You also need to pass in either
a src_group_id or cidr_ip.

	Parameters:	
	group_id – The name of the security group you are removing
the rule from.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp | -1

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are disabling

	to_port (int [https://docs.python.org/2/library/functions.html#int]) – The ending port number you are disabling

	src_group_id (src_group_id) – The source security group you are revoking access to.

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are revoking access to.
See http://goo.gl/Yj5QC

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
run_instances(image_id, min_count=1, max_count=1, key_name=None, security_groups=None, user_data=None, addressing_type=None, instance_type='m1.small', placement=None, kernel_id=None, ramdisk_id=None, monitoring_enabled=False, subnet_id=None, block_device_map=None, disable_api_termination=False, instance_initiated_shutdown_behavior=None, private_ip_address=None, placement_group=None, client_token=None, security_group_ids=None)

	Runs an image on EC2.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the image to run

	min_count (int [https://docs.python.org/2/library/functions.html#int]) – The minimum number of instances to launch

	max_count (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of instances to launch

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key pair with which to launch instances

	security_groups (list of strings) – The names of the security groups with which to
associate instances

	user_data (string [https://docs.python.org/2/library/string.html#module-string]) – The user data passed to the launched instances

	instance_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of instance to run:

	m1.small

	m1.large

	m1.xlarge

	c1.medium

	c1.xlarge

	m2.xlarge

	m2.2xlarge

	m2.4xlarge

	cc1.4xlarge

	t1.micro

	placement (string [https://docs.python.org/2/library/string.html#module-string]) – The availability zone in which to launch the instances

	kernel_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the kernel with which to launch the
instances

	ramdisk_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the RAM disk with which to launch the
instances

	monitoring_enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Enable CloudWatch monitoring on the instance.

	subnet_id (string [https://docs.python.org/2/library/string.html#module-string]) – The subnet ID within which to launch the instances
for VPC.

	private_ip_address (string [https://docs.python.org/2/library/string.html#module-string]) – If you’re using VPC, you can optionally use
this parameter to assign the instance a
specific available IP address from the
subnet (e.g., 10.0.0.25).

	block_device_map (boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping data structure
describing the EBS volumes associated
with the Image.

	disable_api_termination (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the instances will be locked
and will not be able to be terminated
via the API.

	instance_initiated_shutdown_behavior (string [https://docs.python.org/2/library/string.html#module-string]) – Specifies whether the
instance stops or
terminates on
instance-initiated
shutdown.
Valid values are:

	stop

	terminate

	placement_group (string [https://docs.python.org/2/library/string.html#module-string]) – If specified, this is the name of the placement
group in which the instance(s) will be launched.

	client_token (string [https://docs.python.org/2/library/string.html#module-string]) – Unique, case-sensitive identifier you provide
to ensure idempotency of the request.
Maximum 64 ASCII characters

	security_group_ids (list of strings) – The ID of the VPC security groups with
which to associate instances

	Return type:	Reservation

	Returns:	The boto.ec2.instance.Reservation associated with
the request for machines

	
start_instances(instance_ids=None)

	Start the instances specified

	Parameters:	instance_ids (list) – A list of strings of the Instance IDs to start

	Return type:	list

	Returns:	A list of the instances started

	
stop_instances(instance_ids=None, force=False)

	Stop the instances specified

	Parameters:	
	instance_ids (list) – A list of strings of the Instance IDs to stop

	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Forces the instance to stop

	Return type:	list

	Returns:	A list of the instances stopped

	
terminate_instances(instance_ids=None)

	Terminate the instances specified

	Parameters:	instance_ids (list) – A list of strings of the Instance IDs to terminate

	Return type:	list

	Returns:	A list of the instances terminated

	
trim_snapshots(hourly_backups=8, daily_backups=7, weekly_backups=4)

	Trim excess snapshots, based on when they were taken. More current
snapshots are retained, with the number retained decreasing as you
move back in time.

If ebs volumes have a ‘Name’ tag with a value, their snapshots
will be assigned the same tag when they are created. The values
of the ‘Name’ tags for snapshots are used by this function to
group snapshots taken from the same volume (or from a series
of like-named volumes over time) for trimming.

For every group of like-named snapshots, this function retains
the newest and oldest snapshots, as well as, by default, the
first snapshots taken in each of the last eight hours, the first
snapshots taken in each of the last seven days, the first snapshots
taken in the last 4 weeks (counting Midnight Sunday morning as
the start of the week), and the first snapshot from the first
Sunday of each month forever.

	Parameters:	
	hourly_backups (int [https://docs.python.org/2/library/functions.html#int]) – How many recent hourly backups should be saved.

	daily_backups (int [https://docs.python.org/2/library/functions.html#int]) – How many recent daily backups should be saved.

	weekly_backups (int [https://docs.python.org/2/library/functions.html#int]) – How many recent weekly backups should be saved.

	
unmonitor_instance(instance_id)

	Deprecated Version, maintained for backward compatibility.
Disable CloudWatch monitoring for the supplied instance.

	Parameters:	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance id

	Return type:	list

	Returns:	A list of boto.ec2.instanceinfo.InstanceInfo

	
unmonitor_instances(instance_ids)

	Disable CloudWatch monitoring for the supplied instance.

	Parameters:	instance_id (list of string) – The instance id

	Return type:	list

	Returns:	A list of boto.ec2.instanceinfo.InstanceInfo

boto.ec2.ec2object

Represents an EC2 Object

	
class boto.ec2.ec2object.EC2Object(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.ec2object.TaggedEC2Object(connection=None)

	Any EC2 resource that can be tagged should be represented
by a Python object that subclasses this class. This class
has the mechanism in place to handle the tagSet element in
the Describe* responses. If tags are found, it will create
a TagSet object and allow it to parse and collect the tags
into a dict that is stored in the “tags” attribute of the
object.

	
add_tag(key, value='')

	Add a tag to this object. Tag’s are stored by AWS and can be used
to organize and filter resources. Adding a tag involves a round-trip
to the EC2 service.

	Parameters:	
	key (str [https://docs.python.org/2/library/functions.html#str]) – The key or name of the tag being stored.

	value (str [https://docs.python.org/2/library/functions.html#str]) – An optional value that can be stored with the tag.
If you want only the tag name and no value, the
value should be the empty string.

	
remove_tag(key, value=None)

	Remove a tag from this object. Removing a tag involves a round-trip
to the EC2 service.

	Parameters:	
	key (str [https://docs.python.org/2/library/functions.html#str]) – The key or name of the tag being stored.

	value (str [https://docs.python.org/2/library/functions.html#str]) – An optional value that can be stored with the tag.
If a value is provided, it must match the value
currently stored in EC2. If not, the tag will not
be removed. If a value of None is provided, all
tags with the specified name will be deleted.
NOTE: There is an important distinction between
a value of ‘’ and a value of None.

	
startElement(name, attrs, connection)

	

boto.ec2.elb

See the ELB Reference.

boto.ec2.image

	
class boto.ec2.image.Image(connection=None)

	Represents an EC2 Image

	
deregister(delete_snapshot=False)

	

	
endElement(name, value, connection)

	

	
get_kernel()

	

	
get_launch_permissions()

	

	
get_ramdisk()

	

	
remove_launch_permissions(user_ids=None, group_names=None)

	

	
reset_launch_attributes()

	

	
run(min_count=1, max_count=1, key_name=None, security_groups=None, user_data=None, addressing_type=None, instance_type='m1.small', placement=None, kernel_id=None, ramdisk_id=None, monitoring_enabled=False, subnet_id=None, block_device_map=None, disable_api_termination=False, instance_initiated_shutdown_behavior=None, private_ip_address=None, placement_group=None, security_group_ids=None)

	Runs this instance.

	Parameters:	
	min_count (int [https://docs.python.org/2/library/functions.html#int]) – The minimum number of instances to start

	max_count (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of instances to start

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the keypair to run this instance with.

	security_groups –

	user_data –

	daddressing_type –

	instance_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of instance to run. Current choices are:
m1.small | m1.large | m1.xlarge | c1.medium |
c1.xlarge | m2.xlarge | m2.2xlarge |
m2.4xlarge | cc1.4xlarge

	placement (string [https://docs.python.org/2/library/string.html#module-string]) – The availability zone in which to launch the instances

	kernel_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the kernel with which to launch the instances

	ramdisk_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the RAM disk with which to launch the instances

	monitoring_enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Enable CloudWatch monitoring on the instance.

	subnet_id (string [https://docs.python.org/2/library/string.html#module-string]) – The subnet ID within which to launch the instances for VPC.

	private_ip_address (string [https://docs.python.org/2/library/string.html#module-string]) – If you’re using VPC, you can optionally use
this parameter to assign the instance a
specific available IP address from the
subnet (e.g., 10.0.0.25).

	block_device_map (boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping data structure
describing the EBS volumes associated
with the Image.

	disable_api_termination (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the instances will be locked
and will not be able to be terminated
via the API.

	instance_initiated_shutdown_behavior (string [https://docs.python.org/2/library/string.html#module-string]) – Specifies whether the instance
stops or terminates on instance-initiated
shutdown. Valid values are:
stop | terminate

	placement_group (string [https://docs.python.org/2/library/string.html#module-string]) – If specified, this is the name of the placement
group in which the instance(s) will be launched.

	security_group_ids –

	Return type:	Reservation

	Returns:	The boto.ec2.instance.Reservation associated with the request for machines

	
set_launch_permissions(user_ids=None, group_names=None)

	

	
startElement(name, attrs, connection)

	

	
update(validate=False)

	Update the image’s state information by making a call to fetch
the current image attributes from the service.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
image the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
class boto.ec2.image.ImageAttribute(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.image.ProductCodes

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.instance

Represents an EC2 Instance

	
class boto.ec2.instance.ConsoleOutput(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instance.Group(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instance.Instance(connection=None)

	
	
confirm_product(product_code)

	

	
endElement(name, value, connection)

	

	
get_attribute(attribute)

	Gets an attribute from this instance.

	Parameters:	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you need information about
Valid choices are:
instanceType|kernel|ramdisk|userData|
disableApiTermination|
instanceInitiatedShutdownBehavior|
rootDeviceName|blockDeviceMapping

	Return type:	boto.ec2.image.InstanceAttribute

	Returns:	An InstanceAttribute object representing the value of the
attribute requested

	
get_console_output()

	Retrieves the console output for the instance.

	Return type:	boto.ec2.instance.ConsoleOutput

	Returns:	The console output as a ConsoleOutput object

	
modify_attribute(attribute, value)

	Changes an attribute of this instance

	Parameters:	
	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you wish to change.
AttributeName - Expected value (default)
instanceType - A valid instance type (m1.small)
kernel - Kernel ID (None)
ramdisk - Ramdisk ID (None)
userData - Base64 encoded String (None)
disableApiTermination - Boolean (true)
instanceInitiatedShutdownBehavior - stop|terminate
rootDeviceName - device name (None)

	value (string [https://docs.python.org/2/library/string.html#module-string]) – The new value for the attribute

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
monitor()

	

	
reboot()

	

	
reset_attribute(attribute)

	Resets an attribute of this instance to its default value.

	Parameters:	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute to reset. Valid values are:
kernel|ramdisk

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
start()

	Start the instance.

	
startElement(name, attrs, connection)

	

	
stop(force=False)

	Stop the instance

	Parameters:	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Forces the instance to stop

	Return type:	list

	Returns:	A list of the instances stopped

	
terminate()

	Terminate the instance

	
unmonitor()

	

	
update(validate=False)

	Update the instance’s state information by making a call to fetch
the current instance attributes from the service.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
instance the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
use_ip(ip_address)

	

	
class boto.ec2.instance.InstanceAttribute(parent=None)

	
	
ValidValues = ['instanceType', 'kernel', 'ramdisk', 'userData', 'disableApiTermination', 'instanceInitiatedShutdownBehavior', 'rootDeviceName', 'blockDeviceMapping', 'sourceDestCheck', 'groupSet']

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instance.Reservation(connection=None)

	Represents a Reservation response object.

	Variables:	
	id – The unique ID of the Reservation.

	owner_id – The unique ID of the owner of the Reservation.

	groups – A list of Group objects representing the security
groups associated with launched instances.

	instances – A list of Instance objects launched in this
Reservation.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
stop_all()

	

	
class boto.ec2.instance.SubParse(section, parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.instanceinfo

	
class boto.ec2.instanceinfo.InstanceInfo(connection=None, id=None, state=None)

	Represents an EC2 Instance status response from CloudWatch

	Variables:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – The instance’s EC2 ID.

	state (str [https://docs.python.org/2/library/functions.html#str]) – Specifies the current status of the instance.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.instancestatus

	
class boto.ec2.instancestatus.Details

	A dict object that contains name/value pairs which provide
more detailed information about the status of the system
or the instance.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.Event(code=None, description=None, not_before=None, not_after=None)

	A status event for an instance.

	Variables:	
	code [https://docs.python.org/2/library/code.html#module-code] – A string indicating the event type.

	description – A string describing the reason for the event.

	not_before – A datestring describing the earliest time for
the event.

	not_after – A datestring describing the latest time for
the event.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.EventSet

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.InstanceStatus(id=None, zone=None, events=None, state_code=None, state_name=None)

	Represents an EC2 Instance status as reported by
DescribeInstanceStatus request.

	Variables:	
	id – The instance identifier.

	zone – The availability zone of the instance.

	events – A list of events relevant to the instance.

	state_code – An integer representing the current state
of the instance.

	state_name – A string describing the current state
of the instance.

	system_status – A Status object that reports impaired
functionality that stems from issues related to the systems
that support an instance, such as such as hardware failures
and network connectivity problems.

	instance_status – A Status object that reports impaired
functionality that arises from problems internal to the instance.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.InstanceStatusSet(connection=None)

	A list object that contains the results of a call to
DescribeInstanceStatus request. Each element of the
list will be an InstanceStatus object.

	Variables:	next_token – If the response was truncated by
the EC2 service, the next_token attribute of the
object will contain the string that needs to be
passed in to the next request to retrieve the next
set of results.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.Status(status=None, details=None)

	A generic Status object used for system status and instance status.

	Variables:	
	status – A string indicating overall status.

	details – A dict containing name-value pairs which provide
more details about the current status.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.keypair

Represents an EC2 Keypair

	
class boto.ec2.keypair.KeyPair(connection=None)

	
	
copy_to_region(region)

	Create a new key pair of the same new in another region.
Note that the new key pair will use a different ssh
cert than the this key pair. After doing the copy,
you will need to save the material associated with the
new key pair (use the save method) to a local file.

	Parameters:	region (boto.ec2.regioninfo.RegionInfo) – The region to which this security group will be copied.

	Return type:	boto.ec2.keypair.KeyPair

	Returns:	The new key pair

	
delete()

	Delete the KeyPair.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, otherwise False.

	
endElement(name, value, connection)

	

	
save(directory_path)

	Save the material (the unencrypted PEM encoded RSA private key)
of a newly created KeyPair to a local file.

	Parameters:	directory_path (string [https://docs.python.org/2/library/string.html#module-string]) – The fully qualified path to the directory
in which the keypair will be saved. The
keypair file will be named using the name
of the keypair as the base name and .pem
for the file extension. If a file of that
name already exists in the directory, an
exception will be raised and the old file
will not be overwritten.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

boto.ec2.regioninfo

	
class boto.ec2.regioninfo.EC2RegionInfo(connection=None, name=None, endpoint=None)

	Represents an EC2 Region

boto.ec2.reservedinstance

	
class boto.ec2.reservedinstance.ReservedInstance(connection=None, id=None, instance_type=None, availability_zone=None, duration=None, fixed_price=None, usage_price=None, description=None, instance_count=None, state=None)

	
	
endElement(name, value, connection)

	

	
class boto.ec2.reservedinstance.ReservedInstancesOffering(connection=None, id=None, instance_type=None, availability_zone=None, duration=None, fixed_price=None, usage_price=None, description=None)

	
	
describe()

	

	
endElement(name, value, connection)

	

	
purchase(instance_count=1)

	

	
startElement(name, attrs, connection)

	

boto.ec2.securitygroup

Represents an EC2 Security Group

	
class boto.ec2.securitygroup.GroupOrCIDR(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.securitygroup.IPPermissions(parent=None)

	
	
add_grant(name=None, owner_id=None, cidr_ip=None)

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.securitygroup.IPPermissionsList

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.securitygroup.SecurityGroup(connection=None, owner_id=None, name=None, description=None, id=None)

	
	
add_rule(ip_protocol, from_port, to_port, src_group_name, src_group_owner_id, cidr_ip)

	Add a rule to the SecurityGroup object. Note that this method
only changes the local version of the object. No information
is sent to EC2.

	
authorize(ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, src_group=None)

	Add a new rule to this security group.
You need to pass in either src_group_name
OR ip_protocol, from_port, to_port,
and cidr_ip. In other words, either you are authorizing another
group or you are authorizing some ip-based rule.

	Parameters:	
	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are enabling

	to_port (int [https://docs.python.org/2/library/functions.html#int]) – The ending port number you are enabling

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are providing access to.
See http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

	src_group (boto.ec2.securitygroup.SecurityGroup or
boto.ec2.securitygroup.GroupOrCIDR) – The Security Group you are granting access to.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
copy_to_region(region, name=None)

	Create a copy of this security group in another region.
Note that the new security group will be a separate entity
and will not stay in sync automatically after the copy
operation.

	Parameters:	
	region (boto.ec2.regioninfo.RegionInfo) – The region to which this security group will be copied.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the copy. If not supplied, the copy
will have the same name as this security group.

	Return type:	boto.ec2.securitygroup.SecurityGroup

	Returns:	The new security group.

	
delete()

	

	
endElement(name, value, connection)

	

	
instances()

	Find all of the current instances that are running within this
security group.

	Return type:	list of boto.ec2.instance.Instance

	Returns:	A list of Instance objects

	
remove_rule(ip_protocol, from_port, to_port, src_group_name, src_group_owner_id, cidr_ip)

	Remove a rule to the SecurityGroup object. Note that this method
only changes the local version of the object. No information
is sent to EC2.

	
revoke(ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, src_group=None)

	

	
startElement(name, attrs, connection)

	

boto.ec2.snapshot

Represents an EC2 Elastic Block Store Snapshot

	
class boto.ec2.snapshot.Snapshot(connection=None)

	
	
AttrName = 'createVolumePermission'

	

	
delete()

	

	
endElement(name, value, connection)

	

	
get_permissions()

	

	
reset_permissions()

	

	
share(user_ids=None, groups=None)

	

	
unshare(user_ids=None, groups=None)

	

	
update(validate=False)

	Update the data associated with this snapshot by querying EC2.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
snapshot the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
class boto.ec2.snapshot.SnapshotAttribute(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.volume

Represents an EC2 Elastic Block Storage Volume

	
class boto.ec2.volume.AttachmentSet

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.volume.Volume(connection=None)

	
	
attach(instance_id, device)

	Attach this EBS volume to an EC2 instance.

	Parameters:	
	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EC2 instance to which it will
be attached.

	device (str [https://docs.python.org/2/library/functions.html#str]) – The device on the instance through which the
volume will be exposed (e.g. /dev/sdh)

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
attachment_state()

	Get the attachment state.

	
create_snapshot(description=None)

	Create a snapshot of this EBS Volume.

	Parameters:	description (str [https://docs.python.org/2/library/functions.html#str]) – A description of the snapshot. Limited to 256 characters.

	Return type:	boto.ec2.snapshot.Snapshot

	Returns:	The created Snapshot object

	
delete()

	Delete this EBS volume.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
detach(force=False)

	Detach this EBS volume from an EC2 instance.

	Parameters:	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Forces detachment if the previous detachment attempt did
not occur cleanly. This option can lead to data loss or
a corrupted file system. Use this option only as a last
resort to detach a volume from a failed instance. The
instance will not have an opportunity to flush file system
caches nor file system meta data. If you use this option,
you must perform file system check and repair procedures.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
endElement(name, value, connection)

	

	
snapshots(owner=None, restorable_by=None)

	Get all snapshots related to this volume. Note that this requires
that all available snapshots for the account be retrieved from EC2
first and then the list is filtered client-side to contain only
those for this volume.

	Parameters:	
	owner (str [https://docs.python.org/2/library/functions.html#str]) – If present, only the snapshots owned by the specified user
will be returned. Valid values are:
self | amazon | AWS Account ID

	restorable_by (str [https://docs.python.org/2/library/functions.html#str]) – If present, only the snapshots that are restorable
by the specified account id will be returned.

	Return type:	list of L{boto.ec2.snapshot.Snapshot}

	Returns:	The requested Snapshot objects

	
startElement(name, attrs, connection)

	

	
update(validate=False)

	Update the data associated with this volume by querying EC2.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
volume the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
volume_state()

	Returns the state of the volume. Same value as the status attribute.

boto.ec2.zone

Represents an EC2 Availability Zone

	
class boto.ec2.zone.MessageSet

	A list object that contains messages associated with
an availability zone.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.zone.Zone(connection=None)

	Represents an Availability Zone.

	Variables:	
	name – The name of the zone.

	state – The current state of the zone.

	region_name – The name of the region the zone is associated with.

	messages – A list of messages related to the zone.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

An Introduction to boto’s Elastic Mapreduce interface

This tutorial focuses on the boto interface to Elastic Mapreduce from
Amazon Web Services. This tutorial assumes that you have already
downloaded and installed boto.

Creating a Connection

The first step in accessing Elastic Mapreduce is to create a connection
to the service. There are two ways to do this in boto. The first is:

>>> from boto.emr.connection import EmrConnection
>>> conn = EmrConnection('<aws access key>', '<aws secret key>')

At this point the variable conn will point to an EmrConnection object.
In this example, the AWS access key and AWS secret key are passed in to
the method explicitly. Alternatively, you can set the environment variables:

AWS_ACCESS_KEY_ID - Your AWS Access Key ID AWS_SECRET_ACCESS_KEY - Your AWS Secret Access Key

and then call the constructor without any arguments, like this:

>>> conn = EmrConnection()

There is also a shortcut function in the boto package called connect_emr
that may provide a slightly easier means of creating a connection:

>>> import boto
>>> conn = boto.connect_emr()

In either case, conn points to an EmrConnection object which we will use
throughout the remainder of this tutorial.

Creating Streaming JobFlow Steps

Upon creating a connection to Elastic Mapreduce you will next
want to create one or more jobflow steps. There are two types of steps, streaming
and custom jar, both of which have a class in the boto Elastic Mapreduce implementation.

Creating a streaming step that runs the AWS wordcount example, itself written in Python, can be accomplished by:

>>> from boto.emr.step import StreamingStep
>>> step = StreamingStep(name='My wordcount example',
... mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
... reducer='aggregate',
... input='s3n://elasticmapreduce/samples/wordcount/input',
... output='s3n://<my output bucket>/output/wordcount_output')

where <my output bucket> is a bucket you have created in S3.

Note that this statement does not run the step, that is accomplished later when we create a jobflow.

Additional arguments of note to the streaming jobflow step are cache_files, cache_archive and step_args. The options cache_files and cache_archive enable you to use the Hadoops distributed cache to share files amongst the instances that run the step. The argument step_args allows one to pass additional arguments to Hadoop streaming, for example modifications to the Hadoop job configuration.

Creating Custom Jar Job Flow Steps

The second type of jobflow step executes tasks written with a custom jar. Creating a custom jar step for the AWS CloudBurst example can be accomplished by:

>>> from boto.emr.step import JarStep
>>> step = JarStep(name='Coudburst example',
... jar='s3n://elasticmapreduce/samples/cloudburst/cloudburst.jar',
... step_args=['s3n://elasticmapreduce/samples/cloudburst/input/s_suis.br',
... 's3n://elasticmapreduce/samples/cloudburst/input/100k.br',
... 's3n://<my output bucket>/output/cloudfront_output',
... 36, 3, 0, 1, 240, 48, 24, 24, 128, 16])

Note that this statement does not actually run the step, that is accomplished later when we create a jobflow. Also note that this JarStep does not include a main_class argument since the jar MANIFEST.MF has a Main-Class entry.

Creating JobFlows

Once you have created one or more jobflow steps, you will next want to create and run a jobflow. Creating a jobflow that executes either of the steps we created above can be accomplished by:

>>> import boto
>>> conn = boto.connect_emr()
>>> jobid = conn.run_jobflow(name='My jobflow',
... log_uri='s3://<my log uri>/jobflow_logs',
... steps=[step])

The method will not block for the completion of the jobflow, but will immediately return. The status of the jobflow can be determined by:

>>> status = conn.describe_jobflow(jobid)
>>> status.state
u'STARTING'

One can then use this state to block for a jobflow to complete. Valid jobflow states currently defined in the AWS API are COMPLETED, FAILED, TERMINATED, RUNNING, SHUTTING_DOWN, STARTING and WAITING.

In some cases you may not have built all of the steps prior to running the jobflow. In these cases additional steps can be added to a jobflow by running:

>>> conn.add_jobflow_steps(jobid, [second_step])

If you wish to add additional steps to a running jobflow you may want to set the keep_alive parameter to True in run_jobflow so that the jobflow does not automatically terminate when the first step completes.

The run_jobflow method has a number of important parameters that are worth investigating. They include parameters to change the number and type of EC2 instances on which the jobflow is executed, set a SSH key for manual debugging and enable AWS console debugging.

Terminating JobFlows

By default when all the steps of a jobflow have finished or failed the jobflow terminates. However, if you set the keep_alive parameter to True or just want to halt the execution of a jobflow early you can terminate a jobflow by:

>>> import boto
>>> conn = boto.connect_emr()
>>> conn.terminate_jobflow('<jobflow id>')

EMR

boto.emr

This module provies an interface to the Elastic MapReduce (EMR)
service from AWS.

boto.emr.connection

Represents a connection to the EMR service

	
class boto.emr.connection.EmrConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/')

	
	
APIVersion = '2009-03-31'

	

	
DebuggingArgs = 's3n://us-east-1.elasticmapreduce/libs/state-pusher/0.1/fetch'

	

	
DebuggingJar = 's3n://us-east-1.elasticmapreduce/libs/script-runner/script-runner.jar'

	

	
DefaultRegionEndpoint = 'elasticmapreduce.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of EmrResponseError

	
add_instance_groups(jobflow_id, instance_groups)

	Adds instance groups to a running cluster.

	Parameters:	
	jobflow_id (str [https://docs.python.org/2/library/functions.html#str]) – The id of the jobflow which will take the
new instance groups

	instance_groups (list(boto.emr.InstanceGroup)) – A list of instance groups to add to the job

	
add_jobflow_steps(jobflow_id, steps)

	Adds steps to a jobflow

	Parameters:	
	jobflow_id (str [https://docs.python.org/2/library/functions.html#str]) – The job flow id

	steps (list(boto.emr.Step)) – A list of steps to add to the job

	
describe_jobflow(jobflow_id)

	Describes a single Elastic MapReduce job flow

	Parameters:	jobflow_id (str [https://docs.python.org/2/library/functions.html#str]) – The job flow id of interest

	
describe_jobflows(states=None, jobflow_ids=None, created_after=None, created_before=None)

	Retrieve all the Elastic MapReduce job flows on your account

	Parameters:	
	states (list) – A list of strings with job flow states wanted

	jobflow_ids (list) – A list of job flow IDs

	created_after (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – Bound on job flow creation time

	created_before (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – Bound on job flow creation time

	
modify_instance_groups(instance_group_ids, new_sizes)

	Modify the number of nodes and configuration settings in an
instance group.

	Parameters:	
	instance_group_ids (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of the ID’s of the instance
groups to be modified

	new_sizes (list(int [https://docs.python.org/2/library/functions.html#int])) – A list of the new sizes for each instance group

	
run_jobflow(name, log_uri, ec2_keyname=None, availability_zone=None, master_instance_type='m1.small', slave_instance_type='m1.small', num_instances=1, action_on_failure='TERMINATE_JOB_FLOW', keep_alive=False, enable_debugging=False, hadoop_version=None, steps=[], bootstrap_actions=[], instance_groups=None, additional_info=None, ami_version='1.0', api_params=None)

	Runs a job flow
:type name: str
:param name: Name of the job flow

	Parameters:	
	log_uri (str [https://docs.python.org/2/library/functions.html#str]) – URI of the S3 bucket to place logs

	ec2_keyname (str [https://docs.python.org/2/library/functions.html#str]) – EC2 key used for the instances

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – EC2 availability zone of the cluster

	master_instance_type (str [https://docs.python.org/2/library/functions.html#str]) – EC2 instance type of the master

	slave_instance_type (str [https://docs.python.org/2/library/functions.html#str]) – EC2 instance type of the slave nodes

	num_instances (int [https://docs.python.org/2/library/functions.html#int]) – Number of instances in the Hadoop cluster

	action_on_failure (str [https://docs.python.org/2/library/functions.html#str]) – Action to take if a step terminates

	keep_alive (bool [https://docs.python.org/2/library/functions.html#bool]) – Denotes whether the cluster should stay
alive upon completion

	enable_debugging (bool [https://docs.python.org/2/library/functions.html#bool]) – Denotes whether AWS console debugging
should be enabled.

	hadoop_version (str [https://docs.python.org/2/library/functions.html#str]) – Version of Hadoop to use. If ami_version
is not set, defaults to ‘0.20’ for backwards compatibility
with older versions of boto.

	steps (list(boto.emr.Step)) – List of steps to add with the job

	bootstrap_actions (list(boto.emr.BootstrapAction)) – List of bootstrap actions that run
before Hadoop starts.

	instance_groups (list(boto.emr.InstanceGroup)) – Optional list of instance groups to
use when creating this job.
NB: When provided, this argument supersedes num_instances
and master/slave_instance_type.

	ami_version (str [https://docs.python.org/2/library/functions.html#str]) – Amazon Machine Image (AMI) version to use
for instances. Values accepted by EMR are ‘1.0’, ‘2.0’, and
‘latest’; EMR currently defaults to ‘1.0’ if you don’t set
‘ami_version’.

	additional_info (JSON str) – A JSON string for selecting additional features

	api_params (dict) – a dictionary of additional parameters to pass
directly to the EMR API (so you don’t have to upgrade boto to
use new EMR features). You can also delete an API parameter
by setting it to None.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The jobflow id

	
set_termination_protection(jobflow_id, termination_protection_status)

	Set termination protection on specified Elastic MapReduce job flows

	Parameters:	
	jobflow_ids (list or str [https://docs.python.org/2/library/functions.html#str]) – A list of job flow IDs

	termination_protection_status (bool [https://docs.python.org/2/library/functions.html#bool]) – Termination protection status

	
terminate_jobflow(jobflow_id)

	Terminate an Elastic MapReduce job flow

	Parameters:	jobflow_id (str [https://docs.python.org/2/library/functions.html#str]) – A jobflow id

	
terminate_jobflows(jobflow_ids)

	Terminate an Elastic MapReduce job flow

	Parameters:	jobflow_ids (list) – A list of job flow IDs

boto.emr.step

	
class boto.emr.step.JarStep(name, jar, main_class=None, action_on_failure='TERMINATE_JOB_FLOW', step_args=None)

	Custom jar step

A elastic mapreduce step that executes a jar

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the step

	jar (str [https://docs.python.org/2/library/functions.html#str]) – S3 URI to the Jar file

	main_class (str [https://docs.python.org/2/library/functions.html#str]) – The class to execute in the jar

	action_on_failure (str [https://docs.python.org/2/library/functions.html#str]) – An action, defined in the EMR docs to take on failure.

	step_args (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of arguments to pass to the step

	
args()

	

	
jar()

	

	
main_class()

	

	
class boto.emr.step.Step

	Jobflow Step base class

	
args()

	

	Return type:	list(str [https://docs.python.org/2/library/functions.html#str])

	Returns:	List of arguments for the step

	
jar()

	

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	URI to the jar

	
main_class()

	

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The main class name

	
class boto.emr.step.StreamingStep(name, mapper, reducer=None, combiner=None, action_on_failure='TERMINATE_JOB_FLOW', cache_files=None, cache_archives=None, step_args=None, input=None, output=None, jar='/home/hadoop/contrib/streaming/hadoop-streaming.jar')

	Hadoop streaming step

A hadoop streaming elastic mapreduce step

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the step

	mapper (str [https://docs.python.org/2/library/functions.html#str]) – The mapper URI

	reducer (str [https://docs.python.org/2/library/functions.html#str]) – The reducer URI

	combiner (str [https://docs.python.org/2/library/functions.html#str]) – The combiner URI. Only works for Hadoop 0.20 and later!

	action_on_failure (str [https://docs.python.org/2/library/functions.html#str]) – An action, defined in the EMR docs to take on failure.

	cache_files (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of cache files to be bundled with the job

	cache_archives (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of jar archives to be bundled with the job

	step_args (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of arguments to pass to the step

	input (str [https://docs.python.org/2/library/functions.html#str] or a list of str) – The input uri

	output (str [https://docs.python.org/2/library/functions.html#str]) – The output uri

	jar (str [https://docs.python.org/2/library/functions.html#str]) – The hadoop streaming jar. This can be either a local path on the master node, or an s3:// URI.

	
args()

	

	
jar()

	

	
main_class()

	

boto.emr.emrobject

This module contains EMR response objects

	
class boto.emr.emrobject.AddInstanceGroupsResponse(connection=None)

	
	
Fields = set(['InstanceGroupIds', 'JobFlowId'])

	

	
class boto.emr.emrobject.Arg(connection=None)

	
	
endElement(name, value, connection)

	

	
class boto.emr.emrobject.BootstrapAction(connection=None)

	
	
Fields = set(['Path', 'Args', 'Name'])

	

	
startElement(name, attrs, connection)

	

	
class boto.emr.emrobject.EmrObject(connection=None)

	
	
Fields = set([])

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.emr.emrobject.InstanceGroup(connection=None)

	
	
Fields = set(['ReadyDateTime', 'InstanceType', 'InstanceRole', 'EndDateTime', 'InstanceRunningCount', 'State', 'BidPrice', 'Market', 'StartDateTime', 'Name', 'InstanceGroupId', 'CreationDateTime', 'InstanceRequestCount', 'LastStateChangeReason', 'LaunchGroup'])

	

	
class boto.emr.emrobject.JobFlow(connection=None)

	
	
Fields = set(['TerminationProtected', 'MasterInstanceId', 'State', 'HadoopVersion', 'LogUri', 'AmiVersion', 'Ec2KeyName', 'ReadyDateTime', 'Type', 'JobFlowId', 'CreationDateTime', 'LastStateChangeReason', 'Name', 'EndDateTime', 'Value', 'InstanceCount', 'RequestId', 'StartDateTime', 'SlaveInstanceType', 'AvailabilityZone', 'MasterPublicDnsName', 'NormalizedInstanceHours', 'MasterInstanceType', 'KeepJobFlowAliveWhenNoSteps', 'Id'])

	

	
startElement(name, attrs, connection)

	

	
class boto.emr.emrobject.KeyValue(connection=None)

	
	
Fields = set(['Value', 'Key'])

	

	
class boto.emr.emrobject.ModifyInstanceGroupsResponse(connection=None)

	
	
Fields = set(['RequestId'])

	

	
class boto.emr.emrobject.RunJobFlowResponse(connection=None)

	
	
Fields = set(['JobFlowId'])

	

	
class boto.emr.emrobject.Step(connection=None)

	
	
Fields = set(['Name', 'EndDateTime', 'Jar', 'ActionOnFailure', 'State', 'MainClass', 'StartDateTime', 'CreationDateTime', 'LastStateChangeReason'])

	

	
startElement(name, attrs, connection)

	

An Introduction to boto’s Autoscale interface

This tutorial focuses on the boto interface to the Autoscale service. This
assumes you are familiar with boto’s EC2 interface and concepts.

Autoscale Concepts

The AWS Autoscale service is comprised of three core concepts:

	Autoscale Group (AG): An AG can be viewed as a collection of criteria for
maintaining or scaling a set of EC2 instances over one or more availability
zones. An AG is limited to a single region.

	Launch Configuration (LC): An LC is the set of information needed by the
AG to launch new instances - this can encompass image ids, startup data,
security groups and keys. Only one LC is attached to an AG.

	Triggers: A trigger is essentially a set of rules for determining when to
scale an AG up or down. These rules can encompass a set of metrics such as
average CPU usage across instances, or incoming requests, a threshold for
when an action will take place, as well as parameters to control how long
to wait after a threshold is crossed.

Creating a Connection

The first step in accessing autoscaling is to create a connection to the service.
There are two ways to do this in boto. The first is:

>>> from boto.ec2.autoscale import AutoScaleConnection
>>> conn = AutoScaleConnection('<aws access key>', '<aws secret key>')

Alternatively, you can use the shortcut:

>>> conn = boto.connect_autoscale()

A Note About Regions and Endpoints

Like EC2 the Autoscale service has a different endpoint for each region. By
default the US endpoint is used. To choose a specific region, instantiate the
AutoScaleConnection object with that region’s endpoint.

>>> ec2 = boto.connect_autoscale(host='autoscaling.eu-west-1.amazonaws.com')

Alternatively, edit your boto.cfg with the default Autoscale endpoint to use:

[Boto]
autoscale_endpoint = autoscaling.eu-west-1.amazonaws.com

Getting Existing AutoScale Groups

To retrieve existing autoscale groups:

>>> conn.get_all_groups()

You will get back a list of AutoScale group objects, one for each AG you have.

Creating Autoscaling Groups

An Autoscaling group has a number of parameters associated with it.

	Name: The name of the AG.

	Availability Zones: The list of availability zones it is defined over.

	Minimum Size: Minimum number of instances running at one time.

	Maximum Size: Maximum number of instances running at one time.

	Launch Configuration (LC): A set of instructions on how to launch an instance.

	Load Balancer: An optional ELB load balancer to use. See the ELB tutorial
for information on how to create a load balancer.

For the purposes of this tutorial, let’s assume we want to create one autoscale
group over the us-east-1a and us-east-1b availability zones. We want to have
two instances in each availability zone, thus a minimum size of 4. For now we
won’t worry about scaling up or down - we’ll introduce that later when we talk
about triggers. Thus we’ll set a maximum size of 4 as well. We’ll also associate
the AG with a load balancer which we assume we’ve already created, called ‘my_lb’.

Our LC tells us how to start an instance. This will at least include the image
id to use, security_group, and key information. We assume the image id, key
name and security groups have already been defined elsewhere - see the EC2
tutorial for information on how to create these.

>>> from boto.ec2.autoscale import LaunchConfiguration
>>> from boto.ec2.autoscale import AutoScalingGroup
>>> lc = LaunchConfiguration(name='my-launch_config', image_id='my-ami',
 key_name='my_key_name',
 security_groups=['my_security_groups'])
>>> conn.create_launch_configuration(lc)

We now have created a launch configuration called ‘my-launch-config’. We are now
ready to associate it with our new autoscale group.

>>> ag = AutoScalingGroup(group_name='my_group', load_balancers=['my-lb'],
 availability_zones=['us-east-1a', 'us-east-1b'],
 launch_config=lc, min_size=4, max_size=4)
>>> conn.create_auto_scaling_group(ag)

We now have a new autoscaling group defined! At this point instances should be
starting to launch. To view activity on an autoscale group:

>>> ag.get_activities()
 [Activity:Launching a new EC2 instance status:Successful progress:100,
 ...]

or alternatively:

>>> conn.get_all_activities(ag)

This autoscale group is fairly useful in that it will maintain the minimum size without
breaching the maximum size defined. That means if one instance crashes, the autoscale
group will use the launch configuration to start a new one in an attempt to maintain
its minimum defined size. It knows instance health using the health check defined on
its associated load balancer.

Scaling a Group Up or Down

It might be more useful to also define means to scale a group up or down
depending on certain criteria. For example, if the average CPU utilization of
all your instances goes above 60%, you may want to scale up a number of
instances to deal with demand - likewise you might want to scale down if usage
drops. These criteria are defined in triggers.

For example, let’s modify our above group to have a maxsize of 8 and define means
of scaling up based on CPU utilization. We’ll say we should scale up if the average
CPU usage goes above 80% and scale down if it goes below 40%.

>>> from boto.ec2.autoscale import Trigger
>>> tr = Trigger(name='my_trigger', autoscale_group=ag,
 measure_name='CPUUtilization', statistic='Average',
 unit='Percent',
 dimensions=[('AutoScalingGroupName', ag.name)],
 period=60, lower_threshold=40,
 lower_breach_scale_increment='-5',
 upper_threshold=80,
 upper_breach_scale_increment='10',
 breach_duration=360)
>> conn.create_trigger(tr)

Auto Scaling Reference

boto.ec2.autoscale

This module provides an interface to the Elastic Compute Cloud (EC2)
Auto Scaling service.

	
class boto.ec2.autoscale.AutoScaleConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/')

	Init method to create a new connection to the AutoScaling service.

	B{Note:} The host argument is overridden by the host specified in the

	boto configuration file.

	
APIVersion = '2011-01-01'

	

	
DefaultRegionEndpoint = 'autoscaling.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
build_list_params(params, items, label)

	Items is a list of dictionaries or strings:

[
 {
 'Protocol' : 'HTTP',
 'LoadBalancerPort' : '80',
 'InstancePort' : '80'
 },
 ..
] etc.

or:

['us-east-1b',...]

	
create_auto_scaling_group(as_group)

	Create auto scaling group.

	
create_launch_configuration(launch_config)

	Creates a new Launch Configuration.

	Parameters:	launch_config (boto.ec2.autoscale.launchconfig.LaunchConfiguration) – LaunchConfiguration object.

	
create_or_update_tags(tags)

	Creates new tags or updates existing tags for an Auto Scaling group.

	Parameters:	tags (List of boto.ec2.autoscale.tag.Tag) – The new or updated tags.

	
create_scaling_policy(scaling_policy)

	Creates a new Scaling Policy.

	Parameters:	scaling_policy (boto.ec2.autoscale.policy.ScalingPolicy) – ScalingPolicy object.

	
create_scheduled_group_action(as_group, name, time, desired_capacity=None, min_size=None, max_size=None)

	Creates a scheduled scaling action for a Auto Scaling group. If you
leave a parameter unspecified, the corresponding value remains
unchanged in the affected Auto Scaling group.

	Parameters:	
	as_group (string [https://docs.python.org/2/library/string.html#module-string]) – The auto scaling group to get activities on.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Scheduled action name.

	time (datetime.datetime [https://docs.python.org/2/library/datetime.html#datetime.datetime]) – The time for this action to start.

	desired_capacity (int [https://docs.python.org/2/library/functions.html#int]) – The number of EC2 instances that should
be running in this group.

	min_size (int [https://docs.python.org/2/library/functions.html#int]) – The minimum size for the new auto scaling group.

	max_size (int [https://docs.python.org/2/library/functions.html#int]) – The minimum size for the new auto scaling group.

	
delete_auto_scaling_group(name, force_delete=False)

	Deletes the specified auto scaling group if the group has no instances
and no scaling activities in progress.

	
delete_launch_configuration(launch_config_name)

	Deletes the specified LaunchConfiguration.

The specified launch configuration must not be attached to an Auto
Scaling group. Once this call completes, the launch configuration is no
longer available for use.

	
delete_policy(policy_name, autoscale_group=None)

	Delete a policy.

	Parameters:	
	policy_name (str [https://docs.python.org/2/library/functions.html#str]) – The name or ARN of the policy to delete.

	autoscale_group (str [https://docs.python.org/2/library/functions.html#str]) – The name of the autoscale group.

	
delete_scheduled_action(scheduled_action_name, autoscale_group=None)

	Deletes a previously scheduled action.

	Parameters:	
	scheduled_action_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the action you want
to delete.

	autoscale_group (str [https://docs.python.org/2/library/functions.html#str]) – The name of the autoscale group.

	
delete_tags(tags)

	Deletes existing tags for an Auto Scaling group.

	Parameters:	tags (List of boto.ec2.autoscale.tag.Tag) – The new or updated tags.

	
disable_metrics_collection(as_group, metrics=None)

	Disables monitoring of group metrics for the Auto Scaling group
specified in AutoScalingGroupName. You can specify the list of affected
metrics with the Metrics parameter.

	
enable_metrics_collection(as_group, granularity, metrics=None)

	Enables monitoring of group metrics for the Auto Scaling group
specified in AutoScalingGroupName. You can specify the list of enabled
metrics with the Metrics parameter.

Auto scaling metrics collection can be turned on only if the
InstanceMonitoring.Enabled flag, in the Auto Scaling group’s launch
configuration, is set to true.

	Parameters:	
	autoscale_group (string [https://docs.python.org/2/library/string.html#module-string]) – The auto scaling group to get activities on.

	granularity (string [https://docs.python.org/2/library/string.html#module-string]) – The granularity to associate with the metrics to
collect. Currently, the only legal granularity is “1Minute”.

	metrics (string list) – The list of metrics to collect. If no metrics are
specified, all metrics are enabled.

	
execute_policy(policy_name, as_group=None, honor_cooldown=None)

	

	
get_all_activities(autoscale_group, activity_ids=None, max_records=None, next_token=None)

	Get all activities for the given autoscaling group.

This action supports pagination by returning a token if there are more
pages to retrieve. To get the next page, call this action again with
the returned token as the NextToken parameter

	Parameters:	
	autoscale_group (str or
boto.ec2.autoscale.group.AutoScalingGroup object) – The auto scaling group to get activities on.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – Maximum amount of activities to return.

	Return type:	list

	Returns:	List of
boto.ec2.autoscale.activity.Activity instances.

	
get_all_adjustment_types()

	

	
get_all_autoscaling_instances(instance_ids=None, max_records=None, next_token=None)

	Returns a description of each Auto Scaling instance in the instance_ids
list. If a list is not provided, the service returns the full details
of all instances up to a maximum of fifty.

This action supports pagination by returning a token if there are more
pages to retrieve. To get the next page, call this action again with
the returned token as the NextToken parameter.

	Parameters:	
	instance_ids (list) – List of Autoscaling Instance IDs which should be
searched for.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of results to return.

	Return type:	list

	Returns:	List of
boto.ec2.autoscale.activity.Activity objects.

	
get_all_groups(names=None, max_records=None, next_token=None)

	Returns a full description of each Auto Scaling group in the given
list. This includes all Amazon EC2 instances that are members of the
group. If a list of names is not provided, the service returns the full
details of all Auto Scaling groups.

This action supports pagination by returning a token if there are more
pages to retrieve. To get the next page, call this action again with
the returned token as the NextToken parameter.

	Parameters:	
	names (list) – List of group names which should be searched for.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – Maximum amount of groups to return.

	Return type:	list

	Returns:	List of boto.ec2.autoscale.group.AutoScalingGroup
instances.

	
get_all_launch_configurations(**kwargs)

	Returns a full description of the launch configurations given the
specified names.

If no names are specified, then the full details of all launch
configurations are returned.

	Parameters:	
	names (list) – List of configuration names which should be searched for.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – Maximum amount of configurations to return.

	next_token (str [https://docs.python.org/2/library/functions.html#str]) – If you have more results than can be returned
at once, pass in this parameter to page through all results.

	Return type:	list

	Returns:	List of
boto.ec2.autoscale.launchconfig.LaunchConfiguration
instances.

	
get_all_metric_collection_types()

	Returns a list of metrics and a corresponding list of granularities
for each metric.

	
get_all_policies(as_group=None, policy_names=None, max_records=None, next_token=None)

	Returns descriptions of what each policy does. This action supports
pagination. If the response includes a token, there are more records
available. To get the additional records, repeat the request with the
response token as the NextToken parameter.

If no group name or list of policy names are provided, all
available policies are returned.

	Parameters:	
	as_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the
boto.ec2.autoscale.group.AutoScalingGroup to filter for.

	names (list) – List of policy names which should be searched for.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – Maximum amount of groups to return.

	
get_all_scaling_process_types()

	Returns scaling process types for use in the ResumeProcesses and
SuspendProcesses actions.

	
get_all_scheduled_actions(as_group=None, start_time=None, end_time=None, scheduled_actions=None, max_records=None, next_token=None)

	

	
get_all_tags(filters=None, max_records=None, next_token=None)

	Lists the Auto Scaling group tags.

This action supports pagination by returning a token if there are more
pages to retrieve. To get the next page, call this action again with the returned token as the NextToken parameter.

	Parameters:	
	filters (dict) – The value of the filter type used to identify
the tags to be returned. NOT IMPLEMENTED YET.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of tags to return.

	Return type:	list

	Returns:	List of boto.ec2.autoscale.tag.Tag
instances.

	
resume_processes(as_group, scaling_processes=None)

	Resumes Auto Scaling processes for an Auto Scaling group.

	Parameters:	
	as_group (string [https://docs.python.org/2/library/string.html#module-string]) – The auto scaling group to resume processes on.

	scaling_processes (list) – Processes you want to resume. If omitted, all
processes will be resumed.

	
set_instance_health(instance_id, health_status, should_respect_grace_period=True)

	Explicitly set the health status of an instance.

	Parameters:	
	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The identifier of the EC2 instance.

	health_status (str [https://docs.python.org/2/library/functions.html#str]) – The health status of the instance.
“Healthy” means that the instance is healthy and should remain
in service. “Unhealthy” means that the instance is unhealthy.
Auto Scaling should terminate and replace it.

	should_respect_grace_period (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this call should
respect the grace period associated with the group.

	
suspend_processes(as_group, scaling_processes=None)

	Suspends Auto Scaling processes for an Auto Scaling group.

	Parameters:	
	as_group (string [https://docs.python.org/2/library/string.html#module-string]) – The auto scaling group to suspend processes on.

	scaling_processes (list) – Processes you want to suspend. If omitted, all
processes will be suspended.

	
terminate_instance(instance_id, decrement_capacity=True)

	Terminates the specified instance. The desired group size can
also be adjusted, if desired.

	Parameters:	
	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the instance to be terminated.

	decrement_capacity – Whether to decrement the size of the
autoscaling group or not.

	
boto.ec2.autoscale.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.ec2.autoscale.AutoScaleConnection.

	Parameters:	region_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the region to connect to.

	Return type:	boto.ec2.AutoScaleConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.ec2.autoscale.regions()

	Get all available regions for the Auto Scaling service.

	Return type:	list

	Returns:	A list of boto.RegionInfo instances

boto.ec2.autoscale.activity

	
class boto.ec2.autoscale.activity.Activity(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.autoscale.group

	
class boto.ec2.autoscale.group.AutoScalingGroup(connection=None, name=None, launch_config=None, availability_zones=None, load_balancers=None, default_cooldown=None, health_check_type=None, health_check_period=None, placement_group=None, vpc_zone_identifier=None, desired_capacity=None, min_size=None, max_size=None, **kwargs)

	Creates a new AutoScalingGroup with the specified name.

You must not have already used up your entire quota of
AutoScalingGroups in order for this call to be successful. Once the
creation request is completed, the AutoScalingGroup is ready to be
used in other calls.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Name of autoscaling group (required).

	availability_zones (list) – List of availability zones (required).

	default_cooldown (int [https://docs.python.org/2/library/functions.html#int]) – Number of seconds after a Scaling Activity
completes before any further scaling activities can start.

	desired_capacity (int [https://docs.python.org/2/library/functions.html#int]) – The desired capacity for the group.

	health_check_period (str [https://docs.python.org/2/library/functions.html#str]) – Length of time in seconds after a new
EC2 instance comes into service that Auto Scaling starts
checking its health.

	health_check_type (str [https://docs.python.org/2/library/functions.html#str]) – The service you want the health status from,
Amazon EC2 or Elastic Load Balancer.

	launch_config (str [https://docs.python.org/2/library/functions.html#str] or LaunchConfiguration) – Name of launch configuration (required).

	load_balancers (list) – List of load balancers.

	maxsize – Maximum size of group (required).

	minsize – Minimum size of group (required).

	placement_group (str [https://docs.python.org/2/library/functions.html#str]) – Physical location of your cluster placement
group created in Amazon EC2.

	vpc_zone_identifier (str [https://docs.python.org/2/library/functions.html#str]) – The subnet identifier of the Virtual
Private Cloud.

	Return type:	boto.ec2.autoscale.group.AutoScalingGroup

	Returns:	An autoscale group.

	
cooldown

	

	
delete(force_delete=False)

	Delete this auto-scaling group if no instances attached or no
scaling activities in progress.

	
endElement(name, value, connection)

	

	
get_activities(activity_ids=None, max_records=50)

	Get all activies for this group.

	
resume_processes(scaling_processes=None)

	Resumes Auto Scaling processes for an Auto Scaling group.

	
set_capacity(capacity)

	Set the desired capacity for the group.

	
shutdown_instances()

	Convenience method which shuts down all instances associated with
this group.

	
startElement(name, attrs, connection)

	

	
suspend_processes(scaling_processes=None)

	Suspends Auto Scaling processes for an Auto Scaling group.

	
update()

	Sync local changes with AutoScaling group.

	
class boto.ec2.autoscale.group.AutoScalingGroupMetric(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.autoscale.group.EnabledMetric(connection=None, metric=None, granularity=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.autoscale.group.ProcessType(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.autoscale.group.SuspendedProcess(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.autoscale.instance

	
class boto.ec2.autoscale.instance.Instance(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.autoscale.launchconfig

	
class boto.ec2.autoscale.launchconfig.BlockDeviceMapping(connection=None, device_name=None, virtual_name=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.autoscale.launchconfig.Ebs(connection=None, snapshot_id=None, volume_size=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.autoscale.launchconfig.InstanceMonitoring(connection=None, enabled='false')

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.autoscale.launchconfig.LaunchConfiguration(connection=None, name=None, image_id=None, key_name=None, security_groups=None, user_data=None, instance_type='m1.small', kernel_id=None, ramdisk_id=None, block_device_mappings=None, instance_monitoring=False)

	A launch configuration.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the launch configuration to create.

	image_id (str [https://docs.python.org/2/library/functions.html#str]) – Unique ID of the Amazon Machine Image (AMI) which was
assigned during registration.

	key_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the EC2 key pair.

	security_groups (list) – Names of the security groups with which to
associate the EC2 instances.

	user_data (str [https://docs.python.org/2/library/functions.html#str]) – The user data available to launched EC2 instances.

	instance_type (str [https://docs.python.org/2/library/functions.html#str]) – The instance type

	kern_id (str [https://docs.python.org/2/library/functions.html#str]) – Kernel id for instance

	ramdisk_id (str [https://docs.python.org/2/library/functions.html#str]) – RAM disk id for instance

	block_device_mappings (list) – Specifies how block devices are exposed
for instances

	instance_monitoring (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether instances in group are launched
with detailed monitoring.

	
delete()

	Delete this launch configuration.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.autoscale.policy

	
class boto.ec2.autoscale.policy.AdjustmentType(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.autoscale.policy.Alarm(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.autoscale.policy.MetricCollectionTypes(connection=None)

	
	
class BaseType(connection)

	
	
arg = ''

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class MetricCollectionTypes.Granularity(connection)

	
	
arg = 'Granularity'

	

	
class MetricCollectionTypes.Metric(connection)

	
	
arg = 'Metric'

	

	
MetricCollectionTypes.endElement(name, value, connection)

	

	
MetricCollectionTypes.startElement(name, attrs, connection)

	

	
class boto.ec2.autoscale.policy.ScalingPolicy(connection=None, **kwargs)

	Scaling Policy

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Name of scaling policy.

	adjustment_type (str [https://docs.python.org/2/library/functions.html#str]) – Specifies the type of adjustment. Valid values are ChangeInCapacity, ExactCapacity and PercentChangeInCapacity.

	as_name (str [https://docs.python.org/2/library/functions.html#str] or int [https://docs.python.org/2/library/functions.html#int]) – Name or ARN of the Auto Scaling Group.

	scaling_adjustment (int [https://docs.python.org/2/library/functions.html#int]) – Value of adjustment (type specified in adjustment_type).

	cooldown (int [https://docs.python.org/2/library/functions.html#int]) – Time (in seconds) before Alarm related Scaling Activities can start after the previous Scaling Activity ends.

	
delete()

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.autoscale.request

	
class boto.ec2.autoscale.request.Request(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.autoscale.scheduled

	
class boto.ec2.autoscale.scheduled.ScheduledUpdateGroupAction(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

CloudFront

This new boto module provides an interface to Amazon’s Content Service,
CloudFront.

Warning

This module is not well tested. Paging of distributions is not yet
supported. CNAME support is completely untested. Use with caution.
Feedback and bug reports are greatly appreciated.

Creating a CloudFront connection

>>> import boto
>>> c = boto.connect_cloudfront()

Create a new boto.cloudfront.distribution.Distribution:

>>> distro = c.create_distribution(origin='mybucket.s3.amazonaws.com', enabled=False, comment='My new Distribution')
>>> d.domain_name
u'd2oxf3980lnb8l.cloudfront.net'
>>> d.id
u'ECH69MOIW7613'
>>> d.status
u'InProgress'
>>> d.config.comment
u'My new distribution'
>>> d.config.origin
<S3Origin: mybucket.s3.amazonaws.com>
>>> d.config.caller_reference
u'31b8d9cf-a623-4a28-b062-a91856fac6d0'
>>> d.config.enabled
False

Note that a new caller reference is created automatically, using
uuid.uuid4(). The boto.cloudfront.distribution.Distribution,
boto.cloudfront.distribution.DistributionConfig and
boto.cloudfront.distribution.DistributionSummary objects are defined
in the boto.cloudfront.distribution module.

To get a listing of all current distributions:

>>> rs = c.get_all_distributions()
>>> rs
[<boto.cloudfront.distribution.DistributionSummary instance at 0xe8d4e0>,
 <boto.cloudfront.distribution.DistributionSummary instance at 0xe8d788>]

This returns a list of boto.cloudfront.distribution.DistributionSummary
objects. Note that paging is not yet supported! To get a
boto.cloudfront.distribution.DistributionObject from a
boto.cloudfront.distribution.DistributionSummary object:

>>> ds = rs[1]
>>> distro = ds.get_distribution()
>>> distro.domain_name
u'd2oxf3980lnb8l.cloudfront.net'

To change a property of a distribution object:

>>> distro.comment
u'My new distribution'
>>> distro.update(comment='This is a much better comment')
>>> distro.comment
'This is a much better comment'

You can also enable/disable a distribution using the following
convenience methods:

>>> distro.enable() # just calls distro.update(enabled=True)

or

>>> distro.disable() # just calls distro.update(enabled=False)

The only attributes that can be updated for a Distribution are
comment, enabled and cnames.

To delete a boto.cloudfront.distribution.Distribution:

>>> distro.delete()

CloudFront

boto.cloudfront

	
class boto.cloudfront.CloudFrontConnection(aws_access_key_id=None, aws_secret_access_key=None, port=None, proxy=None, proxy_port=None, host='cloudfront.amazonaws.com', debug=0)

	
	
DefaultHost = 'cloudfront.amazonaws.com'

	

	
Version = '2010-11-01'

	

	
create_distribution(origin, enabled, caller_reference='', cnames=None, comment='', trusted_signers=None)

	

	
create_invalidation_request(distribution_id, paths, caller_reference=None)

	Creates a new invalidation request
:see: http://goo.gl/8vECq

	
create_origin_access_identity(caller_reference='', comment='')

	

	
create_streaming_distribution(origin, enabled, caller_reference='', cnames=None, comment='', trusted_signers=None)

	

	
delete_distribution(distribution_id, etag)

	

	
delete_origin_access_identity(access_id, etag)

	

	
delete_streaming_distribution(distribution_id, etag)

	

	
get_all_distributions()

	

	
get_all_origin_access_identity()

	

	
get_all_streaming_distributions()

	

	
get_distribution_config(distribution_id)

	

	
get_distribution_info(distribution_id)

	

	
get_etag(response)

	

	
get_origin_access_identity_config(access_id)

	

	
get_origin_access_identity_info(access_id)

	

	
get_streaming_distribution_config(distribution_id)

	

	
get_streaming_distribution_info(distribution_id)

	

	
invalidation_request_status(distribution_id, request_id, caller_reference=None)

	

	
set_distribution_config(distribution_id, etag, config)

	

	
set_origin_access_identity_config(access_id, etag, config)

	

	
set_streaming_distribution_config(distribution_id, etag, config)

	

boto.cloudfront.distribution

	
class boto.cloudfront.distribution.Distribution(connection=None, config=None, domain_name='', id='', last_modified_time=None, status='')

	
	
add_object(name, content, headers=None, replace=True)

	Adds a new content object to the Distribution. The content
for the object will be copied to a new Key in the S3 Bucket
and the permissions will be set appropriately for the type
of Distribution.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The name or key of the new object.

	content (file-like object) – A file-like object that contains the content
for the new object.

	headers (dict) – A dictionary containing additional headers
you would like associated with the new
object in S3.

	Return type:	boto.cloudfront.object.Object

	Returns:	The newly created object.

	
create_signed_url(url, keypair_id, expire_time=None, valid_after_time=None, ip_address=None, policy_url=None, private_key_file=None, private_key_string=None)

	Creates a signed CloudFront URL that is only valid within the specified
parameters.

	Parameters:	
	url (str [https://docs.python.org/2/library/functions.html#str]) – The URL of the protected object.

	keypair_id (str [https://docs.python.org/2/library/functions.html#str]) – The keypair ID of the Amazon KeyPair used to sign
theURL. This ID MUST correspond to the private key
specified with private_key_file or private_key_string.

	expire_time (int [https://docs.python.org/2/library/functions.html#int]) – The expiry time of the URL. If provided, the URL
will expire after the time has passed. If not provided the URL will
never expire. Format is a unix epoch.
Use time.time() + duration_in_sec.

	valid_after_time (int [https://docs.python.org/2/library/functions.html#int]) – If provided, the URL will not be valid until
after valid_after_time. Format is a unix epoch.
Use time.time() + secs_until_valid.

	ip_address (str [https://docs.python.org/2/library/functions.html#str]) – If provided, only allows access from the specified
IP address. Use ‘192.168.0.10’ for a single IP or
use ‘192.168.0.0/24’ CIDR notation for a subnet.

	policy_url (str [https://docs.python.org/2/library/functions.html#str]) – If provided, allows the signature to contain
wildcard globs in the URL. For example, you could
provide: ‘http://example.com/media/*‘ and the policy
and signature would allow access to all contents of
the media subdirectory. If not specified, only
allow access to the exact url provided in ‘url’.

	private_key_file (str [https://docs.python.org/2/library/functions.html#str] or file object.) – If provided, contains the filename of the
private key file used for signing or an open
file object containing the private key
contents. Only one of private_key_file or
private_key_string can be provided.

	private_key_string (str [https://docs.python.org/2/library/functions.html#str]) – If provided, contains the private key string
used for signing. Only one of private_key_file or
private_key_string can be provided.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The signed URL.

	
delete()

	Delete this CloudFront Distribution. The content
associated with the Distribution is not deleted from
the underlying Origin bucket in S3.

	
disable()

	Activate the Distribution. A convenience wrapper around
the update method.

	
enable()

	Deactivate the Distribution. A convenience wrapper around
the update method.

	
endElement(name, value, connection)

	

	
get_objects()

	Return a list of all content objects in this distribution.

	Return type:	list of boto.cloudfront.object.Object

	Returns:	The content objects

	
set_permissions(object, replace=False)

	Sets the S3 ACL grants for the given object to the appropriate
value based on the type of Distribution. If the Distribution
is serving private content the ACL will be set to include the
Origin Access Identity associated with the Distribution. If
the Distribution is serving public content the content will
be set up with “public-read”.

	Parameters:	
	enabled – The Object whose ACL is being set

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If False, the Origin Access Identity will be
appended to the existing ACL for the object.
If True, the ACL for the object will be
completely replaced with one that grants
READ permission to the Origin Access Identity.

	
set_permissions_all(replace=False)

	Sets the S3 ACL grants for all objects in the Distribution
to the appropriate value based on the type of Distribution.

	Parameters:	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If False, the Origin Access Identity will be
appended to the existing ACL for the object.
If True, the ACL for the object will be
completely replaced with one that grants
READ permission to the Origin Access Identity.

	
startElement(name, attrs, connection)

	

	
update(enabled=None, cnames=None, comment=None)

	Update the configuration of the Distribution. The only values
of the DistributionConfig that can be directly updated are:

	CNAMES

	Comment

	Whether the Distribution is enabled or not

Any changes to the trusted_signers or origin properties of
this distribution’s current config object will also be included in
the update. Therefore, to set the origin access identity for this
distribution, set Distribution.config.origin.origin_access_identity
before calling this update method.

	Parameters:	
	enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the Distribution is active or not.

	cnames (list of str) – The DNS CNAME’s associated with this
Distribution. Maximum of 10 values.

	comment (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The comment associated with the Distribution.

	
class boto.cloudfront.distribution.DistributionConfig(connection=None, origin=None, enabled=False, caller_reference='', cnames=None, comment='', trusted_signers=None, default_root_object=None, logging=None)

	

	Parameters:	
	origin (boto.cloudfront.origin.S3Origin or
boto.cloudfront.origin.CustomOrigin) – Origin information to associate with the
distribution. If your distribution will use
an Amazon S3 origin, then this should be an
S3Origin object. If your distribution will use
a custom origin (non Amazon S3), then this
should be a CustomOrigin object.

	enabled (array of str) – Whether the distribution is enabled to accept
end user requests for content.

	caller_reference – A unique number that ensures the
request can’t be replayed. If no
caller_reference is provided, boto
will generate a type 4 UUID for use
as the caller reference.

	cnames – A CNAME alias you want to associate with this
distribution. You can have up to 10 CNAME aliases
per distribution.

	comment (str [https://docs.python.org/2/library/functions.html#str]) – Any comments you want to include about the
distribution.

	trusted_signers (:class`boto.cloudfront.signers.TrustedSigners`) – Specifies any AWS accounts you want to
permit to create signed URLs for private
content. If you want the distribution to
use signed URLs, this should contain a
TrustedSigners object; if you want the
distribution to use basic URLs, leave
this None.

	default_root_object – Designates a default root object.
Only include a DefaultRootObject value
if you are going to assign a default
root object for the distribution.

	logging (:class`boto.cloudfront.logging.LoggingInfo`) – Controls whether access logs are written for the
distribution. If you want to turn on access logs,
this should contain a LoggingInfo object; otherwise
it should contain None.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.cloudfront.distribution.DistributionSummary(connection=None, domain_name='', id='', last_modified_time=None, status='', origin=None, cname='', comment='', enabled=False)

	
	
endElement(name, value, connection)

	

	
get_distribution()

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudfront.distribution.StreamingDistribution(connection=None, config=None, domain_name='', id='', last_modified_time=None, status='')

	
	
delete()

	

	
startElement(name, attrs, connection)

	

	
update(enabled=None, cnames=None, comment=None)

	Update the configuration of the StreamingDistribution. The only values
of the StreamingDistributionConfig that can be directly updated are:

	CNAMES

	Comment

	Whether the Distribution is enabled or not

Any changes to the trusted_signers or origin properties of
this distribution’s current config object will also be included in
the update. Therefore, to set the origin access identity for this
distribution, set
StreamingDistribution.config.origin.origin_access_identity
before calling this update method.

	Parameters:	
	enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the StreamingDistribution is active or not.

	cnames (list of str) – The DNS CNAME’s associated with this
Distribution. Maximum of 10 values.

	comment (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The comment associated with the Distribution.

	
class boto.cloudfront.distribution.StreamingDistributionConfig(connection=None, origin='', enabled=False, caller_reference='', cnames=None, comment='', trusted_signers=None, logging=None)

	
	
to_xml()

	

	
class boto.cloudfront.distribution.StreamingDistributionSummary(connection=None, domain_name='', id='', last_modified_time=None, status='', origin=None, cname='', comment='', enabled=False)

	
	
get_distribution()

	

boto.cloudfront.origin

	
class boto.cloudfront.origin.CustomOrigin(dns_name=None, http_port=80, https_port=443, origin_protocol_policy=None)

	Origin information to associate with the distribution.
If your distribution will use a non-Amazon S3 origin,
then you use the CustomOrigin element.

	Parameters:	
	dns_name (str [https://docs.python.org/2/library/functions.html#str]) – The DNS name of your Amazon S3 bucket to
associate with the distribution.
For example: mybucket.s3.amazonaws.com.

	http_port (int [https://docs.python.org/2/library/functions.html#int]) – The HTTP port the custom origin listens on.

	https_port – The HTTPS port the custom origin listens on.

	origin_protocol_policy (str [https://docs.python.org/2/library/functions.html#str]) – The origin protocol policy to
apply to your origin. If you
specify http-only, CloudFront
will use HTTP only to access the origin.
If you specify match-viewer, CloudFront
will fetch from your origin using HTTP
or HTTPS, based on the protocol of the
viewer request.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.cloudfront.origin.S3Origin(dns_name=None, origin_access_identity=None)

	Origin information to associate with the distribution.
If your distribution will use an Amazon S3 origin,
then you use the S3Origin element.

	Parameters:	
	dns_name (str [https://docs.python.org/2/library/functions.html#str]) – The DNS name of your Amazon S3 bucket to
associate with the distribution.
For example: mybucket.s3.amazonaws.com.

	origin_access_identity (str [https://docs.python.org/2/library/functions.html#str]) – The CloudFront origin access
identity to associate with the
distribution. If you want the
distribution to serve private content,
include this element; if you want the
distribution to serve public content,
remove this element.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
boto.cloudfront.origin.get_oai_value(origin_access_identity)

	

boto.cloudfront.exception

	
exception boto.cloudfront.exception.CloudFrontServerError(status, reason, body=None, *args)

	

An Introduction to boto’s SimpleDB interface

This tutorial focuses on the boto interface to AWS’ SimpleDB [http://aws.amazon.com/simpledb/]. This tutorial
assumes that you have boto already downloaded and installed.

Creating a Connection

The first step in accessing SimpleDB is to create a connection to the service.
To do so, the most straight forward way is the following:

>>> import boto
>>> conn = boto.connect_sdb(aws_access_key_id='<YOUR_AWS_KEY_ID>',aws_secret_access_key='<YOUR_AWS_SECRET_KEY>')
>>> conn
SDBConnection:sdb.amazonaws.com
>>>

Bear in mind that if you have your credentials in boto config in your home
directory, the two keyword arguments in the call above are not needed. Also
important to note is that just as any other AWS service, SimpleDB is
region-specific and as such you might want to specify which region to connect
to, by default, it’ll connect to the US-EAST-1 region.

Creating Domains

Arguably, once you have your connection established, you’ll want to create one or more dmains.
Creating new domains is a fairly straight forward operation. To do so, you can proceed as follows:

>>> conn.create_domain('test-domain')
Domain:test-domain
>>>
>>> conn.create_domain('test-domain-2')
Domain:test-domain
>>>

Please note that SimpleDB, unlike its newest sibling DynamoDB, is truly and completely schema-less.
Thus, there’s no need specify domain keys or ranges.

Listing All Domains

Unlike DynamoDB or other database systems, SimpleDB uses the concept of ‘domains’ instead of tables.
So, to list all your domains for your account in a region, you can simply do as follows:

>>> domains = conn.get_all_domains()
>>> domains
[Domain:test-domain, Domain:test-domain-2]
>>>

The get_all_domains() method returns a boto.resultset.ResultSet containing
all boto.sdb.domain.Domain objects associated with
this connection’s Access Key ID for that region.

Retrieving a Domain (by name)

If you wish to retrieve a specific domain whose name is known, you can do so as follows:

>>> dom = conn.get_domain('test-domain')
>>> dom
Domain:test-domain
>>>

The get_domain call has an optional validate parameter, which defaults to True. This will make sure to raise
an exception if the domain you are looking for doesn’t exist. If you set it to false, it will return a
Domain object blindly regardless of its existence.

Getting Domain Metadata

There are times when you might want to know your domains’ machine usage, aprox. item count and other such data.
To this end, boto offers a simple and convenient way to do so as shown below:

>>> domain_meta = conn.domain_metadata(dom)
>>> domain_meta
<boto.sdb.domain.DomainMetaData instance at 0x23cd440>
>>> dir(domain_meta)
['BoxUsage', 'DomainMetadataResponse', 'DomainMetadataResult', 'RequestId', 'ResponseMetadata',
'__doc__', '__init__', '__module__', 'attr_name_count', 'attr_names_size', 'attr_value_count', 'attr_values_size',
'domain', 'endElement', 'item_count', 'item_names_size', 'startElement', 'timestamp']
>>> domain_meta.item_count
0
>>>

Please bear in mind that while in the example above we used a previously retrieved domain object as the parameter, you
can retrieve the domain metadata via its name (string).

Adding Items (and attributes)

Once you have your domain setup, presumably, you’ll want to start adding items to it.
In its most straight forward form, you need to provide a name for the item – think of it
as a record id – and a collection of the attributes you want to store in the item (often a Dictionary-like object).
So, adding an item to a domain looks as follows:

>>> item_name = 'ABC_123'
>>> item_attrs = {'Artist': 'The Jackson 5', 'Genera':'Pop'}
>>> dom.put_attributes(item_name, item_attrs)
True
>>>

Now let’s check if it worked:

>>> domain_meta = conn.domain_metadata(dom)
>>> domain_meta.item_count
1
>>>

Batch Adding Items (and attributes)

You can also add a number of items at the same time in a similar fashion. All you have to provide to the batch_put_items() method
is a Dictionary-like object with your items and their respective attributes, as follows:

>>> items = {'item1':{'attr1':'val1'},'item2':{'attr2':'val2'}}
>>> dom.batch_put_items(items)
True
>>>

Now, let’s check the item count once again:

>>> domain_meta = conn.domain_metadata(dom)
>>> domain_meta.item_count
3
>>>

A few words of warning: both batch_put_items() and put_item(), by default, will overwrite the values of the attributes if both
the item and attribute already exist. If the item exists, but not the attributes, it will append the new attributes to the
attribute list of that item. If you do not wish these methods to behave in that manner, simply supply them with a ‘replace=False’
parameter.

Retrieving Items

To retrieve an item along with its attributes is a fairly straight forward operation and can be accomplished as follows:

>>> dom.get_item('item1')
{u'attr1': u'val1'}
>>>

Since SimpleDB works in an “eventual consistency” manner, we can also request a forced consistent read (though this will
invariably adversely affect read performance). The way to accomplish that is as shown below:

>>> dom.get_item('item1', consistent_read=True)
{u'attr1': u'val1'}
>>>

Retrieving One or More Items

Another way to retrieve items is through boto’s select() method. This method, at the bare minimum, requires a standard SQL select query string
and you would do something along the lines of:

>>> query = 'select * from `test-domain` where attr1="val1"'
>>> rs = dom.select(query)
>>> for j in rs:
... print 'o hai'
...
o hai
>>>

This method returns a ResultSet collection you can iterate over.

Updating Item Attributes

The easiest way to modify an item’s attributes is by manipulating the item’s attributes and then saving those changes. For example:

>>> item = dom.get_item('item1')
>>> item['attr1'] = 'val_changed'
>>> item.save()

Deleting Items (and its attributes)

Deleting an item is a very simple operation. All you are required to provide is either the name of the item or an item object to the
delete_item() method, boto will take care of the rest:

>>>dom.delete_item(item)
>>>True

Deleting Domains

To delete a domain and all items under it (i.e. be very careful), you can do it as follows:

>>> conn.delete_domain('test-domain')
True
>>>

SDB Reference

In addition to what is seen below, boto includes an abstraction
layer for SimpleDB that may be used:

	SimpleDB DB (Maintained, but little documentation)

boto.sdb

	
boto.sdb.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.sdb.connection.SDBConnection.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.sdb.connection.SDBConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.sdb.get_region(region_name, **kw_params)

	Find and return a boto.sdb.regioninfo.RegionInfo object
given a region name.

	Type:	str

	Param:	The name of the region.

	Return type:	boto.sdb.regioninfo.RegionInfo

	Returns:	The RegionInfo object for the given region or None if
an invalid region name is provided.

	
boto.sdb.regions()

	Get all available regions for the SDB service.

	Return type:	list

	Returns:	A list of boto.sdb.regioninfo.RegionInfo instances

boto.sdb.connection

	
class boto.sdb.connection.ItemThread(name, domain_name, item_names)

	A threaded Item retriever utility class.
Retrieved Item objects are stored in the
items instance variable after run() is called.

Tip

The item retrieval will not start until
the run() method is called.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – A thread name. Used for identification.

	domain_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of a SimpleDB
Domain

	item_names (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – The name(s) of the items to retrieve from the specified
Domain.

	Variables:	items (list) – A list of items retrieved. Starts as empty list.

	
run()

	Start the threaded retrieval of items. Populates the
items list with Item objects.

	
class boto.sdb.connection.SDBConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', converter=None, security_token=None)

	This class serves as a gateway to your SimpleDB region (defaults to
us-east-1). Methods within allow access to SimpleDB
Domain objects and their associated
Item objects.

Tip

While you may instantiate this class directly, it may be easier to
go through boto.connect_sdb().

For any keywords that aren’t documented, refer to the parent class,
boto.connection.AWSAuthConnection. You can avoid having
to worry about these keyword arguments by instantiating these objects
via boto.connect_sdb().

	Parameters:	region (boto.sdb.regioninfo.SDBRegionInfo) – Explicitly specify a region. Defaults to us-east-1
if not specified. You may also specify the region in your boto.cfg:

[SDB]
region = eu-west-1

	
APIVersion = '2009-04-15'

	

	
DefaultRegionEndpoint = 'sdb.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of SDBResponseError

	
batch_delete_attributes(domain_or_name, items)

	Delete multiple items in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	items (dict or dict-like object) – A dictionary-like object. The keys of the dictionary are
the item names and the values are either:

	dictionaries of attribute names/values, exactly the
same as the attribute_names parameter of the scalar
put_attributes call. The attribute name/value pairs
will only be deleted if they match the name/value
pairs passed in.

	None which means that all attributes associated
with the item should be deleted.

	Returns:	True if successful

	
batch_put_attributes(domain_or_name, items, replace=True)

	Store attributes for multiple items in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	items (dict or dict-like object) – A dictionary-like object. The keys of the dictionary are
the item names and the values are themselves dictionaries
of attribute names/values, exactly the same as the
attribute_names parameter of the scalar put_attributes
call.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the attribute values passed in will replace
existing values or will be added as addition values.
Defaults to True.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
create_domain(domain_name)

	Create a SimpleDB domain.

	Parameters:	domain_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new domain

	Return type:	boto.sdb.domain.Domain object

	Returns:	The newly created domain

	
delete_attributes(domain_or_name, item_name, attr_names=None, expected_value=None)

	Delete attributes from a given item in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being
deleted.

	attributes (dict, list or boto.sdb.item.Item) – Either a list containing attribute names which
will cause all values associated with that attribute
name to be deleted or a dict or Item containing the
attribute names and keys and list of values to
delete as the value. If no value is supplied,
all attribute name/values for the item will be
deleted.

	expected_value (list) – If supplied, this is a list or tuple consisting
of a single attribute name and expected value. The list can be
of the form:

	[‘name’, ‘value’]

In which case the call will first verify that the attribute “name”
of this item has a value of “value”. If it does, the delete
will proceed, otherwise a ConditionalCheckFailed error will be
returned. The list can also be of the form:

	[‘name’, True|False]

which will simply check for the existence (True) or
non-existence (False) of the attribute.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_domain(domain_or_name)

	Delete a SimpleDB domain.

Caution

This will delete the domain and all items within the domain.

	Parameters:	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
domain_metadata(domain_or_name)

	Get the Metadata for a SimpleDB domain.

	Parameters:	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	Return type:	boto.sdb.domain.DomainMetaData object

	Returns:	The newly created domain metadata object

	
get_all_domains(max_domains=None, next_token=None)

	Returns a boto.resultset.ResultSet containing
all boto.sdb.domain.Domain objects associated with
this connection’s Access Key ID.

	Parameters:	
	max_domains (int [https://docs.python.org/2/library/functions.html#int]) – Limit the returned
ResultSet to the specified
number of members.

	next_token (str [https://docs.python.org/2/library/functions.html#str]) – A token string that was returned in an
earlier call to this method as the next_token attribute
on the returned ResultSet
object. This attribute is set if there are more than Domains than
the value specified in the max_domains keyword. Pass the
next_token value from you earlier query in this keyword to
get the next ‘page’ of domains.

	
get_attributes(domain_or_name, item_name, attribute_names=None, consistent_read=False, item=None)

	Retrieve attributes for a given item in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are
being retrieved.

	attribute_names (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – An attribute name or list of attribute names.
This parameter is optional. If not supplied, all attributes will
be retrieved for the item.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – When set to true, ensures that the most recent
data is returned.

	item (boto.sdb.item.Item) – Instead of instantiating a new Item object, you may
specify one to update.

	Return type:	boto.sdb.item.Item

	Returns:	An Item with the requested attribute name/values set on it

	
get_domain(domain_name, validate=True)

	Retrieves a boto.sdb.domain.Domain object whose name
matches domain_name.

	Parameters:	
	domain_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the domain to retrieve

	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – When True, check to see if the domain
actually exists. If False, blindly return a
Domain object with the
specified name set.

	Raises:	boto.exception.SDBResponseError if validate is
True and no match could be found.

	Return type:	boto.sdb.domain.Domain

	Returns:	The requested domain

	
get_domain_and_name(domain_or_name)

	Given a str or boto.sdb.domain.Domain, return a
tuple with the following members (in order):

	In instance of boto.sdb.domain.Domain for the requested
domain

	The domain’s name as a str

	Parameters:	domain_or_name (str or boto.sdb.domain.Domain) – The domain or domain name to get the domain
and name for.

	Raises:	boto.exception.SDBResponseError when an invalid
domain name is specified.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

	Returns:	A tuple with contents outlined as per above.

	
get_usage()

	Returns the BoxUsage (in USD) accumulated on this specific SDBConnection
instance.

Tip

This can be out of date, and should only be treated as a
rough estimate. Also note that this estimate only applies to the
requests made on this specific connection instance. It is by
no means an account-wide estimate.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

	Returns:	The accumulated BoxUsage of all requests made on the connection.

	
lookup(domain_name, validate=True)

	Lookup an existing SimpleDB domain. This differs from
get_domain() in that None is returned if validate is
True and no match was found (instead of raising an exception).

	Parameters:	
	domain_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the domain to retrieve

	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a None value will be returned
if the specified domain can’t be found. If False, a
Domain object will be dumbly
returned, regardless of whether it actually exists.

	Return type:	boto.sdb.domain.Domain object or None

	Returns:	The Domain object or None if the domain does not exist.

	
print_usage()

	Print the BoxUsage and approximate costs of all requests made on
this specific SDBConnection instance.

Tip

This can be out of date, and should only be treated as a
rough estimate. Also note that this estimate only applies to the
requests made on this specific connection instance. It is by
no means an account-wide estimate.

	
put_attributes(domain_or_name, item_name, attributes, replace=True, expected_value=None)

	Store attributes for a given item in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being
stored.

	attribute_names (dict or dict-like object) – The name/value pairs to store as attributes

	expected_value (list) – If supplied, this is a list or tuple consisting
of a single attribute name and expected value. The list can be
of the form:

	[‘name’, ‘value’]

In which case the call will first verify that the attribute “name”
of this item has a value of “value”. If it does, the delete
will proceed, otherwise a ConditionalCheckFailed error will be
returned. The list can also be of the form:

	[‘name’, True|False]

which will simply check for the existence (True) or
non-existence (False) of the attribute.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the attribute values passed in will replace
existing values or will be added as addition values.
Defaults to True.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
select(domain_or_name, query='', next_token=None, consistent_read=False)

	Returns a set of Attributes for item names within domain_name that
match the query. The query must be expressed in using the SELECT
style syntax rather than the original SimpleDB query language.
Even though the select request does not require a domain object,
a domain object must be passed into this method so the Item objects
returned can point to the appropriate domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object) – Either the name of a domain or a Domain object

	query (string [https://docs.python.org/2/library/string.html#module-string]) – The SimpleDB query to be performed.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – When set to true, ensures that the most recent
data is returned.

	Return type:	ResultSet

	Returns:	An iterator containing the results.

	
set_item_cls(cls)

	While the default item class is boto.sdb.item.Item, this
default may be overridden. Use this method to change a connection’s
item class.

	Parameters:	cls (object [https://docs.python.org/2/library/functions.html#object]) – The new class to set as this connection’s item
class. See the default item class for inspiration as to what your
replacement should/could look like.

boto.sdb.domain

Represents an SDB Domain

	
class boto.sdb.domain.Domain(connection=None, name=None)

	
	
batch_delete_attributes(items)

	Delete multiple items in this domain.

	Parameters:	items (dict or dict-like object) – A dictionary-like object. The keys of the dictionary are
the item names and the values are either:

	dictionaries of attribute names/values, exactly the
same as the attribute_names parameter of the scalar
put_attributes call. The attribute name/value pairs
will only be deleted if they match the name/value
pairs passed in.

	None which means that all attributes associated
with the item should be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
batch_put_attributes(items, replace=True)

	Store attributes for multiple items.

	Parameters:	
	items (dict or dict-like object) – A dictionary-like object. The keys of the dictionary are
the item names and the values are themselves dictionaries
of attribute names/values, exactly the same as the
attribute_names parameter of the scalar put_attributes
call.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the attribute values passed in will replace
existing values or will be added as addition values.
Defaults to True.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete()

	Delete this domain, and all items under it

	
delete_attributes(item_name, attributes=None, expected_values=None)

	Delete attributes from a given item.

	Parameters:	
	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being deleted.

	attributes (dict, list or boto.sdb.item.Item) – Either a list containing attribute names which will cause
all values associated with that attribute name to be deleted or
a dict or Item containing the attribute names and keys and list
of values to delete as the value. If no value is supplied,
all attribute name/values for the item will be deleted.

	expected_value (list) – If supplied, this is a list or tuple consisting
of a single attribute name and expected value. The list can be of
the form:

	[‘name’, ‘value’]

In which case the call will first verify that the attribute “name”
of this item has a value of “value”. If it does, the delete
will proceed, otherwise a ConditionalCheckFailed error will be
returned. The list can also be of the form:

	[‘name’, True|False]

which will simply check for the existence (True) or
non-existence (False) of the attribute.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_item(item)

	

	
endElement(name, value, connection)

	

	
from_xml(doc)

	Load this domain based on an XML document

	
get_attributes(item_name, attribute_name=None, consistent_read=False, item=None)

	Retrieve attributes for a given item.

	Parameters:	
	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being retrieved.

	attribute_names (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – An attribute name or list of attribute names. This
parameter is optional. If not supplied, all attributes
will be retrieved for the item.

	Return type:	boto.sdb.item.Item

	Returns:	An Item mapping type containing the requested attribute name/values

	
get_item(item_name, consistent_read=False)

	Retrieves an item from the domain, along with all of its attributes.

	Parameters:	
	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item to retrieve.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – When set to true, ensures that the most
recent data is returned.

	Return type:	boto.sdb.item.Item or None

	Returns:	The requested item, or None if there was no match found

	
get_metadata()

	

	
new_item(item_name)

	

	
put_attributes(item_name, attributes, replace=True, expected_value=None)

	Store attributes for a given item.

	Parameters:	
	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being stored.

	attribute_names (dict or dict-like object) – The name/value pairs to store as attributes

	expected_value (list) – If supplied, this is a list or tuple consisting
of a single attribute name and expected value. The list can be
of the form:

	[‘name’, ‘value’]

In which case the call will first verify that the attribute
“name” of this item has a value of “value”. If it does, the delete
will proceed, otherwise a ConditionalCheckFailed error will be
returned. The list can also be of the form:

	[‘name’, True|False]

which will simply check for the existence (True) or non-existence
(False) of the attribute.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the attribute values passed in will replace
existing values or will be added as addition values.
Defaults to True.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
select(query='', next_token=None, consistent_read=False, max_items=None)

	Returns a set of Attributes for item names within domain_name that match the query.
The query must be expressed in using the SELECT style syntax rather than the
original SimpleDB query language.

	Parameters:	query (string [https://docs.python.org/2/library/string.html#module-string]) – The SimpleDB query to be performed.

	Return type:	iter [https://docs.python.org/2/library/functions.html#iter]

	Returns:	An iterator containing the results. This is actually a generator
function that will iterate across all search results, not just the
first page.

	
startElement(name, attrs, connection)

	

	
to_xml(f=None)

	Get this domain as an XML DOM Document
:param f: Optional File to dump directly to
:type f: File or Stream

	Returns:	File object where the XML has been dumped to

	Return type:	file

	
class boto.sdb.domain.DomainDumpParser(domain)

	SAX parser for a domain that has been dumped

	
characters(ch)

	

	
endElement(name)

	

	
startElement(name, attrs)

	

	
class boto.sdb.domain.DomainMetaData(domain=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.sdb.domain.UploaderThread(domain)

	Uploader Thread

	
run()

	

boto.sdb.item

	
class boto.sdb.item.Item(domain, name='', active=False)

	A dict sub-class that serves as an object representation of a
SimpleDB item. An item in SDB is similar to a row in a relational
database. Items belong to a Domain,
which is similar to a table in a relational database.

The keys on instances of this object correspond to attributes that are
stored on the SDB item.

Tip

While it is possible to instantiate this class directly, you may
want to use the convenience methods on boto.sdb.domain.Domain
for that purpose. For example, boto.sdb.domain.Domain.get_item().

	Parameters:	
	domain (boto.sdb.domain.Domain) – The domain that this item belongs to.

	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of this item. This name will be used when
querying for items using methods like
boto.sdb.domain.Domain.get_item()

	
add_value(key, value)

	Helps set or add to attributes on this item. If you are adding a new
attribute that has yet to be set, it will simply create an attribute
named key with your given value as its value. If you are
adding a value to an existing attribute, this method will convert the
attribute to a list (if it isn’t already) and append your new value
to said list.

For clarification, consider the following interactive session:

>>> item = some_domain.get_item('some_item')
>>> item.has_key('some_attr')
False
>>> item.add_value('some_attr', 1)
>>> item['some_attr']
1
>>> item.add_value('some_attr', 2)
>>> item['some_attr']
[1, 2]

	Parameters:	
	key (str [https://docs.python.org/2/library/functions.html#str]) – The attribute to add a value to.

	value (object [https://docs.python.org/2/library/functions.html#object]) – The value to set or append to the attribute.

	
decode_value(value)

	

	
delete()

	Deletes this item in SDB.

Note

This local Python object remains in its current state
after deletion, this only deletes the remote item in SDB.

	
endElement(name, value, connection)

	

	
load()

	Loads or re-loads this item’s attributes from SDB.

Warning

If you have changed attribute values on an Item instance,
this method will over-write the values if they are different in
SDB. For any local attributes that don’t yet exist in SDB,
they will be safe.

	
save(replace=True)

	Saves this item to SDB.

	Parameters:	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, delete any attributes on the remote
SDB item that have a None value on this object.

	
startElement(name, attrs, connection)

	

boto.sdb.queryresultset

	
class boto.sdb.queryresultset.QueryResultSet(domain=None, query='', max_items=None, attr_names=None)

	

	
class boto.sdb.queryresultset.SelectResultSet(domain=None, query='', max_items=None, next_token=None, consistent_read=False)

	
	
next()

	

	
boto.sdb.queryresultset.query_lister(domain, query='', max_items=None, attr_names=None)

	

	
boto.sdb.queryresultset.select_lister(domain, query='', max_items=None)

	

SDB DB Reference

This module offers an ORM-like layer on top of SimpleDB.

boto.sdb.db

boto.sdb.db.blob

	
class boto.sdb.db.blob.Blob(value=None, file=None, id=None)

	Blob object

	
file

	

	
next()

	

	
read()

	

	
readline()

	

	
size

	

boto.sdb.db.key

	
class boto.sdb.db.key.Key(encoded=None, obj=None)

	
	
app()

	

	
classmethod from_path(*args, **kwds)

	

	
has_id_or_name()

	

	
id()

	

	
id_or_name()

	

	
kind()

	

	
name()

	

	
parent()

	

boto.sdb.db.manager

	
boto.sdb.db.manager.get_manager(cls)

	Returns the appropriate Manager class for a given Model class. It does this by
looking in the boto config for a section like this:

[DB]
db_type = SimpleDB
db_user = <aws access key id>
db_passwd = <aws secret access key>
db_name = my_domain
[DB_TestBasic]
db_type = SimpleDB
db_user = <another aws access key id>
db_passwd = <another aws secret access key>
db_name = basic_domain
db_port = 1111

The values in the DB section are “generic values” that will be used if nothing more
specific is found. You can also create a section for a specific Model class that
gives the db info for that class. In the example above, TestBasic is a Model subclass.

boto.sdb.db.manager.pgmanager

Note

This module requires psycopg2 [http://initd.org/] to be installed in the Python path.

boto.sdb.db.manager.sdbmanager

	
class boto.sdb.db.manager.sdbmanager.SDBConverter(manager)

	Responsible for converting base Python types to format compatible with underlying
database. For SimpleDB, that means everything needs to be converted to a string
when stored in SimpleDB and from a string when retrieved.

To convert a value, pass it to the encode or decode method. The encode method
will take a Python native value and convert to DB format. The decode method will
take a DB format value and convert it to Python native format. To find the appropriate
method to call, the generic encode/decode methods will look for the type-specific
method by searching for a method called “encode_<type name>” or “decode_<type name>”.

	
decode(item_type, value)

	

	
decode_blob(value)

	

	
decode_bool(value)

	

	
decode_date(value)

	

	
decode_datetime(value)

	

	
decode_float(value)

	

	
decode_int(value)

	

	
decode_list(prop, value)

	

	
decode_long(value)

	

	
decode_map(prop, value)

	

	
decode_map_element(item_type, value)

	Decode a single element for a map

	
decode_prop(prop, value)

	

	
decode_reference(value)

	

	
decode_string(value)

	Decoding a string is really nothing, just
return the value as-is

	
decode_time(value)

	converts strings in the form of HH:MM:SS.mmmmmm
(created by datetime.time.isoformat()) to
datetime.time objects.

Timzone-aware strings (“HH:MM:SS.mmmmmm+HH:MM”) won’t
be handled right now and will raise TimeDecodeError.

	
encode(item_type, value)

	

	
encode_blob(value)

	

	
encode_bool(value)

	

	
encode_date(value)

	

	
encode_datetime(value)

	

	
encode_float(value)

	See http://tools.ietf.org/html/draft-wood-ldapext-float-00.

	
encode_int(value)

	

	
encode_list(prop, value)

	

	
encode_long(value)

	

	
encode_map(prop, value)

	

	
encode_prop(prop, value)

	

	
encode_reference(value)

	

	
encode_string(value)

	Convert ASCII, Latin-1 or UTF-8 to pure Unicode

	
encode_time(value)

	

	
class boto.sdb.db.manager.sdbmanager.SDBManager(cls, db_name, db_user, db_passwd, db_host, db_port, db_table, ddl_dir, enable_ssl, consistent=None)

	
	
count(cls, filters, quick=True, sort_by=None, select=None)

	Get the number of results that would
be returned in this query

	
decode_value(prop, value)

	

	
delete_key_value(obj, name)

	

	
delete_object(obj)

	

	
domain

	

	
encode_value(prop, value)

	

	
get_blob_bucket(bucket_name=None)

	

	
get_key_value(obj, name)

	

	
get_object(cls, id, a=None)

	

	
get_object_from_id(id)

	

	
get_property(prop, obj, name)

	

	
get_raw_item(obj)

	

	
get_s3_connection()

	

	
load_object(obj)

	

	
query(query)

	

	
query_gql(query_string, *args, **kwds)

	

	
save_object(obj, expected_value=None)

	

	
sdb

	

	
set_key_value(obj, name, value)

	

	
set_property(prop, obj, name, value)

	

	
exception boto.sdb.db.manager.sdbmanager.TimeDecodeError

	

boto.sdb.db.manager.xmlmanager

	
class boto.sdb.db.manager.xmlmanager.XMLConverter(manager)

	Responsible for converting base Python types to format compatible with underlying
database. For SimpleDB, that means everything needs to be converted to a string
when stored in SimpleDB and from a string when retrieved.

To convert a value, pass it to the encode or decode method. The encode method
will take a Python native value and convert to DB format. The decode method will
take a DB format value and convert it to Python native format. To find the appropriate
method to call, the generic encode/decode methods will look for the type-specific
method by searching for a method called “encode_<type name>” or “decode_<type name>”.

	
decode(item_type, value)

	

	
decode_bool(value)

	

	
decode_datetime(value)

	

	
decode_int(value)

	

	
decode_long(value)

	

	
decode_password(value)

	

	
decode_prop(prop, value)

	

	
decode_reference(value)

	

	
encode(item_type, value)

	

	
encode_bool(value)

	

	
encode_datetime(value)

	

	
encode_int(value)

	

	
encode_long(value)

	

	
encode_password(value)

	

	
encode_prop(prop, value)

	

	
encode_reference(value)

	

	
get_text_value(parent_node)

	

	
class boto.sdb.db.manager.xmlmanager.XMLManager(cls, db_name, db_user, db_passwd, db_host, db_port, db_table, ddl_dir, enable_ssl)

	
	
decode_value(prop, value)

	

	
delete_key_value(obj, name)

	

	
delete_object(obj)

	

	
encode_value(prop, value)

	

	
get_doc()

	

	
get_key_value(obj, name)

	

	
get_list(prop_node, item_type)

	

	
get_object(cls, id)

	

	
get_object_from_doc(cls, id, doc)

	

	
get_property(prop, obj, name)

	

	
get_props_from_doc(cls, id, doc)

	Pull out the properties from this document
Returns the class, the properties in a hash, and the id if provided as a tuple
:return: (cls, props, id)

	
get_raw_item(obj)

	

	
get_s3_connection()

	

	
load_object(obj)

	

	
marshal_object(obj, doc=None)

	

	
new_doc()

	

	
query(cls, filters, limit=None, order_by=None)

	

	
query_gql(query_string, *args, **kwds)

	

	
reset()

	

	
save_list(doc, items, prop_node)

	

	
save_object(obj, expected_value=None)

	Marshal the object and do a PUT

	
set_key_value(obj, name, value)

	

	
set_property(prop, obj, name, value)

	

	
unmarshal_object(fp, cls=None, id=None)

	

	
unmarshal_props(fp, cls=None, id=None)

	Same as unmarshalling an object, except it returns
from “get_props_from_doc”

boto.sdb.db.model

	
class boto.sdb.db.model.Expando(id=None, **kw)

	

	
class boto.sdb.db.model.Model(id=None, **kw)

	
	
classmethod all(limit=None, next_token=None)

	

	
delete()

	

	
delete_attributes(attrs)

	Delete just these attributes, not the whole object.

	Parameters:	attrs (list) – Attributes to save, as a list of string names

	Returns:	self

	Return type:	boto.sdb.db.model.Model

	
classmethod find(limit=None, next_token=None, **params)

	

	
classmethod find_property(prop_name)

	

	
classmethod find_subclass(name)

	Find a subclass with a given name

	
classmethod from_xml(fp)

	

	
classmethod get_by_id(ids=None, parent=None)

	

	
classmethod get_by_ids(ids=None, parent=None)

	

	
classmethod get_by_key_name(key_names, parent=None)

	

	
classmethod get_lineage()

	

	
classmethod get_or_insert(key_name, **kw)

	

	
classmethod get_xmlmanager()

	

	
id = None

	

	
key()

	

	
classmethod kind()

	

	
load()

	

	
classmethod properties(hidden=True)

	

	
put(expected_value=None)

	Save this object as it is, with an optional expected value

	Parameters:	expected_value (tuple [https://docs.python.org/2/library/functions.html#tuple] or list) – Optional tuple of Attribute, and Value that
must be the same in order to save this object. If this
condition is not met, an SDBResponseError will be raised with a
Confict status code.

	Returns:	This object

	Return type:	boto.sdb.db.model.Model

	
put_attributes(attrs)

	Save just these few attributes, not the whole object

	Parameters:	attrs (dict) – Attributes to save, key->value dict

	Returns:	self

	Return type:	boto.sdb.db.model.Model

	
reload()

	

	
save(expected_value=None)

	Save this object as it is, with an optional expected value

	Parameters:	expected_value (tuple [https://docs.python.org/2/library/functions.html#tuple] or list) – Optional tuple of Attribute, and Value that
must be the same in order to save this object. If this
condition is not met, an SDBResponseError will be raised with a
Confict status code.

	Returns:	This object

	Return type:	boto.sdb.db.model.Model

	
save_attributes(attrs)

	Save just these few attributes, not the whole object

	Parameters:	attrs (dict) – Attributes to save, key->value dict

	Returns:	self

	Return type:	boto.sdb.db.model.Model

	
set_manager(manager)

	

	
to_dict()

	

	
to_xml(doc=None)

	

	
class boto.sdb.db.model.ModelMeta(name, bases, dict)

	Metaclass for all Models

boto.sdb.db.property

	
class boto.sdb.db.property.BlobProperty(verbose_name=None, name=None, default=None, required=False, validator=None, choices=None, unique=False)

	
	
data_type

	alias of Blob

	
type_name = 'blob'

	

	
class boto.sdb.db.property.BooleanProperty(verbose_name=None, name=None, default=False, required=False, validator=None, choices=None, unique=False)

	
	
data_type

	alias of bool [https://docs.python.org/2/library/functions.html#bool]

	
empty(value)

	

	
type_name = 'Boolean'

	

	
class boto.sdb.db.property.CalculatedProperty(verbose_name=None, name=None, default=None, required=False, validator=None, choices=None, calculated_type=<type 'int'>, unique=False, use_method=False)

	
	
get_value_for_datastore(model_instance)

	

	
class boto.sdb.db.property.DateProperty(verbose_name=None, auto_now=False, auto_now_add=False, name=None, default=None, required=False, validator=None, choices=None, unique=False)

	
	
data_type

	alias of date

	
default_value()

	

	
get_value_for_datastore(model_instance)

	

	
now()

	

	
type_name = 'Date'

	

	
validate(value)

	

	
class boto.sdb.db.property.DateTimeProperty(verbose_name=None, auto_now=False, auto_now_add=False, name=None, default=None, required=False, validator=None, choices=None, unique=False)

	
	
data_type

	alias of datetime

	
default_value()

	

	
get_value_for_datastore(model_instance)

	

	
now()

	

	
type_name = 'DateTime'

	

	
validate(value)

	

	
class boto.sdb.db.property.FloatProperty(verbose_name=None, name=None, default=0.0, required=False, validator=None, choices=None, unique=False)

	
	
data_type

	alias of float [https://docs.python.org/2/library/functions.html#float]

	
empty(value)

	

	
type_name = 'Float'

	

	
validate(value)

	

	
class boto.sdb.db.property.IntegerProperty(verbose_name=None, name=None, default=0, required=False, validator=None, choices=None, unique=False, max=2147483647, min=-2147483648)

	
	
data_type

	alias of int [https://docs.python.org/2/library/functions.html#int]

	
empty(value)

	

	
type_name = 'Integer'

	

	
validate(value)

	

	
class boto.sdb.db.property.ListProperty(item_type, verbose_name=None, name=None, default=None, **kwds)

	
	
data_type

	alias of list

	
default_value()

	

	
empty(value)

	

	
type_name = 'List'

	

	
validate(value)

	

	
class boto.sdb.db.property.LongProperty(verbose_name=None, name=None, default=0, required=False, validator=None, choices=None, unique=False)

	
	
data_type

	alias of long [https://docs.python.org/2/library/functions.html#long]

	
empty(value)

	

	
type_name = 'Long'

	

	
validate(value)

	

	
class boto.sdb.db.property.MapProperty(item_type=<type 'str'>, verbose_name=None, name=None, default=None, **kwds)

	
	
data_type

	alias of dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
default_value()

	

	
empty(value)

	

	
type_name = 'Map'

	

	
validate(value)

	

	
class boto.sdb.db.property.PasswordProperty(verbose_name=None, name=None, default='', required=False, validator=None, choices=None, unique=False, hashfunc=None)

	Hashed property whose original value can not be
retrieved, but still can be compared.

Works by storing a hash of the original value instead
of the original value. Once that’s done all that
can be retrieved is the hash.

The comparison

obj.password == ‘foo’

generates a hash of ‘foo’ and compares it to the
stored hash.

Underlying data type for hashing, storing, and comparing
is boto.utils.Password. The default hash function is
defined there (currently sha512 in most cases, md5
where sha512 is not available)

It’s unlikely you’ll ever need to use a different hash
function, but if you do, you can control the behavior
in one of two ways:

	Specifying hashfunc in PasswordProperty constructor

import hashlib

	class MyModel(model):

	password = PasswordProperty(hashfunc=hashlib.sha224)

	Subclassing Password and PasswordProperty

	class SHA224Password(Password):

	hashfunc=hashlib.sha224

	class SHA224PasswordProperty(PasswordProperty):

	data_type=MyPassword
type_name=”MyPassword”

	class MyModel(Model):

	password = SHA224PasswordProperty()

The hashfunc parameter overrides the default hashfunc in boto.utils.Password.

The remaining parameters are passed through to StringProperty.__init__

	
data_type

	alias of Password

	
get_value_for_datastore(model_instance)

	

	
make_value_from_datastore(value)

	

	
type_name = 'Password'

	

	
validate(value)

	

	
class boto.sdb.db.property.Property(verbose_name=None, name=None, default=None, required=False, validator=None, choices=None, unique=False)

	
	
data_type

	alias of str [https://docs.python.org/2/library/functions.html#str]

	
default_validator(value)

	

	
default_value()

	

	
empty(value)

	

	
get_choices()

	

	
get_value_for_datastore(model_instance)

	

	
make_value_from_datastore(value)

	

	
name = ''

	

	
type_name = ''

	

	
validate(value)

	

	
verbose_name = ''

	

	
class boto.sdb.db.property.ReferenceProperty(reference_class=None, collection_name=None, verbose_name=None, name=None, default=None, required=False, validator=None, choices=None, unique=False)

	
	
check_instance(value)

	

	
check_uuid(value)

	

	
data_type

	alias of Key

	
type_name = 'Reference'

	

	
validate(value)

	

	
class boto.sdb.db.property.S3KeyProperty(verbose_name=None, name=None, default=None, required=False, validator=None, choices=None, unique=False)

	
	
data_type

	alias of Key

	
get_value_for_datastore(model_instance)

	

	
type_name = 'S3Key'

	

	
validate(value)

	

	
validate_regex = '^s3:\\/\\/([^\\/]*)\\/(.*)$'

	

	
class boto.sdb.db.property.StringProperty(verbose_name=None, name=None, default='', required=False, validator=<function validate_string>, choices=None, unique=False)

	
	
type_name = 'String'

	

	
class boto.sdb.db.property.TextProperty(verbose_name=None, name=None, default='', required=False, validator=None, choices=None, unique=False, max_length=None)

	
	
type_name = 'Text'

	

	
validate(value)

	

	
class boto.sdb.db.property.TimeProperty(verbose_name=None, name=None, default=None, required=False, validator=None, choices=None, unique=False)

	
	
data_type

	alias of time

	
type_name = 'Time'

	

	
validate(value)

	

	
boto.sdb.db.property.validate_string(value)

	

boto.sdb.db.query

	
class boto.sdb.db.query.Query(model_class, limit=None, next_token=None, manager=None)

	
	
count(quick=True)

	

	
fetch(limit, offset=0)

	Not currently fully supported, but we can use this
to allow them to set a limit in a chainable method

	
filter(property_operator, value)

	

	
get_next_token()

	

	
get_query()

	

	
next()

	

	
next_token

	

	
order(key)

	

	
set_next_token(token)

	

	
to_xml(doc=None)

	

An Introduction to boto’s DynamoDB interface

This tutorial focuses on the boto interface to AWS’ DynamoDB [http://aws.amazon.com/dynamodb/]. This tutorial
assumes that you have boto already downloaded and installed.

Creating a Connection

The first step in accessing DynamoDB is to create a connection to the service.
To do so, the most straight forward way is the following:

>>> import boto
>>> conn = boto.connect_dynamodb(
 aws_access_key_id='<YOUR_AWS_KEY_ID>',
 aws_secret_access_key='<YOUR_AWS_SECRET_KEY>')
>>> conn
<boto.dynamodb.layer2.Layer2 object at 0x3fb3090>

Bear in mind that if you have your credentials in boto config in your home
directory, the two keyword arguments in the call above are not needed. More
details on configuration can be found in Boto Config.

Note

At this
time, Amazon DynamoDB is available only in the US-EAST-1 region. The
connect_dynamodb method automatically connect to that region.

The boto.connect_dynamodb() functions returns a
boto.dynamodb.layer2.Layer2 instance, which is a high-level API
for working with DynamoDB. Layer2 is a set of abstractions that sit atop
the lower level boto.dynamodb.layer1.Layer1 API, which closely
mirrors the Amazon DynamoDB API. For the purpose of this tutorial, we’ll
just be covering Layer2.

Listing Tables

Now that we have a DynamoDB connection object, we can then query for a list of
existing tables in that region:

>>> conn.list_tables()
['test-table', 'another-table']

Creating Tables

DynamoDB tables are created with the
Layer2.create_table
method. While DynamoDB’s items (a rough equivalent to a relational DB’s row)
don’t have a fixed schema, you do need to create a schema for the table’s
hash key element, and the optional range key element. This is explained in
greater detail in DynamoDB’s Data Model [http://docs.amazonwebservices.com/amazondynamodb/latest/developerguide/DataModel.html] documentation.

We’ll start by defining a schema that has a hash key and a range key that
are both keys:

>>> message_table_schema = conn.create_schema(
 hash_key_name='forum_name',
 hash_key_proto_value='S',
 range_key_name='subject',
 range_key_proto_value='S'
)

The next few things to determine are table name and read/write throughput. We’ll
defer explaining throughput to the DynamoDB’s Provisioned Throughput [http://docs.amazonwebservices.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html] docs.

We’re now ready to create the table:

>>> table = conn.create_table(
 name='messages',
 schema=message_table_schema,
 read_units=10,
 write_units=10
)
>>> table
Table(messages)

This returns a boto.dynamodb.table.Table instance, which provides
simple ways to create (put), update, and delete items.

Getting a Table

To retrieve an existing table, use
Layer2.get_table:

>>> conn.list_tables()
['test-table', 'another-table', 'messages']
>>> table = conn.get_table('messages')
>>> table
Table(messages)

Layer2.get_table, like
Layer2.create_table,
returns a boto.dynamodb.table.Table instance.

Describing Tables

To get a complete description of a table, use
Layer2.describe_table:

>>> conn.list_tables()
['test-table', 'another-table', 'messages']
>>> conn.describe_table('messages')
{
 'Table': {
 'CreationDateTime': 1327117581.624,
 'ItemCount': 0,
 'KeySchema': {
 'HashKeyElement': {
 'AttributeName': 'forum_name',
 'AttributeType': 'S'
 },
 'RangeKeyElement': {
 'AttributeName': 'subject',
 'AttributeType': 'S'
 }
 },
 'ProvisionedThroughput': {
 'ReadCapacityUnits': 10,
 'WriteCapacityUnits': 10
 },
 'TableName': 'messages',
 'TableSizeBytes': 0,
 'TableStatus': 'ACTIVE'
 }
}

Adding Items

Continuing on with our previously created messages table, adding an:

>>> table = conn.get_table('messages')
>>> item_data = {
 'Body': 'http://url_to_lolcat.gif',
 'SentBy': 'User A',
 'ReceivedTime': '12/9/2011 11:36:03 PM',
 }
>>> item = table.new_item(
 # Our hash key is 'forum'
 hash_key='LOLCat Forum',
 # Our range key is 'subject'
 range_key='Check this out!',
 # This has the
 attrs=item_data
)

The
Table.new_item method creates
a new boto.dynamodb.item.Item instance with your specified
hash key, range key, and attributes already set.
Item is a dict [https://docs.python.org/2/library/stdtypes.html#dict] sub-class,
meaning you can edit your data as such:

item['a_new_key'] = 'testing'
del item['a_new_key']

After you are happy with the contents of the item, use
Item.put to commit it to DynamoDB:

>>> item.put()

Retrieving Items

Now, let’s check if it got added correctly. Since DynamoDB works under an
‘eventual consistency’ mode, we need to specify that we wish a consistent read,
as follows:

>>> table = conn.get_table('messages')
>>> item = table.get_item(
 # Your hash key was 'forum_name'
 hash_key='LOLCat Forum',
 # Your range key was 'subject'
 range_key='Check this out!'
)
>>> item
{
 # Note that this was your hash key attribute (forum_name)
 'forum_name': 'LOLCat Forum',
 # This is your range key attribute (subject)
 'subject': 'Check this out!'
 'Body': 'http://url_to_lolcat.gif',
 'ReceivedTime': '12/9/2011 11:36:03 PM',
 'SentBy': 'User A',
}

Updating Items

To update an item’s attributes, simply retrieve it, modify the value, then
Item.put it again:

>>> table = conn.get_table('messages')
>>> item = table.get_item(
 hash_key='LOLCat Forum',
 range_key='Check this out!'
)
>>> item['SentBy'] = 'User B'
>>> item.put()

Deleting Items

To delete items, use the
Item.delete method:

>>> table = conn.get_table('messages')
>>> item = table.get_item(
 hash_key='LOLCat Forum',
 range_key='Check this out!'
)
>>> item.delete()

Deleting Tables

There are two easy ways to delete a table. Through your top-level
Layer2 object:

>>> conn.delete_table(table)

Or by getting the table, then using
Table.delete:

>>> table = conn.get_table('messages')
>>> table.delete()

DynamoDB

boto.dynamodb

boto.dynamodb.layer1

	
class boto.dynamodb.layer1.Layer1(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, host=None, debug=0, session_token=None)

	This is the lowest-level interface to DynamoDB. Methods at this
layer map directly to API requests and parameters to the methods
are either simple, scalar values or they are the Python equivalent
of the JSON input as defined in the DynamoDB Developer’s Guide.
All responses are direct decoding of the JSON response bodies to
Python data structures via the json or simplejson modules.

	Variables:	throughput_exceeded_events – An integer variable that
keeps a running total of the number of ThroughputExceeded
responses this connection has received from Amazon DynamoDB.

	
DefaultHost = 'dynamodb.us-east-1.amazonaws.com'

	The default DynamoDB API endpoint to connect to.

	
ResponseError

	alias of DynamoDBResponseError

	
ServiceName = 'DynamoDB'

	The name of the Service

	
SessionExpiredError = 'com.amazon.coral.service#ExpiredTokenException'

	The error response returned when session token has expired

	
ThruputError = 'ProvisionedThroughputExceededException'

	The error response returned when provisioned throughput is exceeded

	
Version = '20111205'

	DynamoDB API version.

	
batch_get_item(request_items, object_hook=None)

	Return a set of attributes for a multiple items in
multiple tables using their primary keys.

	Parameters:	request_items (dict) – A Python version of the RequestItems
data structure defined by DynamoDB.

	
create_table(table_name, schema, provisioned_throughput)

	Add a new table to your account. The table name must be unique
among those associated with the account issuing the request.
This request triggers an asynchronous workflow to begin creating
the table. When the workflow is complete, the state of the
table will be ACTIVE.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to create.

	schema (dict) – A Python version of the KeySchema data structure
as defined by DynamoDB

	provisioned_throughput (dict) – A Python version of the
ProvisionedThroughput data structure defined by
DynamoDB.

	
delete_item(table_name, key, expected=None, return_values=None, object_hook=None)

	Delete an item and all of it’s attributes by primary key.
You can perform a conditional delete by specifying an
expected rule.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table containing the item.

	key (dict) – A Python version of the Key data structure
defined by DynamoDB.

	expected (dict) – A Python version of the Expected
data structure defined by DynamoDB.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
delete_table(table_name)

	Deletes the table and all of it’s data. After this request
the table will be in the DELETING state until DynamoDB
completes the delete operation.

	Parameters:	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to delete.

	
describe_table(table_name)

	Returns information about the table including current
state of the table, primary key schema and when the
table was created.

	Parameters:	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to describe.

	
get_item(table_name, key, attributes_to_get=None, consistent_read=False, object_hook=None)

	Return a set of attributes for an item that matches
the supplied key.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table containing the item.

	key (dict) – A Python version of the Key data structure
defined by DynamoDB.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	
list_tables(limit=None, start_table=None)

	Return a list of table names associated with the current account
and endpoint.

	Parameters:	
	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of tables to return.

	limit – The name of the table that starts the
list. If you ran a previous list_tables and not
all results were returned, the response dict would
include a LastEvaluatedTableName attribute. Use
that value here to continue the listing.

	
make_request(action, body='', object_hook=None)

	

	Raises:	DynamoDBExpiredTokenError if the security token expires.

	
put_item(table_name, item, expected=None, return_values=None, object_hook=None)

	Create a new item or replace an old item with a new
item (including all attributes). If an item already
exists in the specified table with the same primary
key, the new item will completely replace the old item.
You can perform a conditional put by specifying an
expected rule.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table in which to put the item.

	item (dict) – A Python version of the Item data structure
defined by DynamoDB.

	expected (dict) – A Python version of the Expected
data structure defined by DynamoDB.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
query(table_name, hash_key_value, range_key_conditions=None, attributes_to_get=None, limit=None, consistent_read=False, scan_index_forward=True, exclusive_start_key=None, object_hook=None)

	Perform a query of DynamoDB. This version is currently punting
and expecting you to provide a full and correct JSON body
which is passed as is to DynamoDB.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to query.

	key – A DynamoDB-style HashKeyValue.

	range_key_conditions (dict) – A Python version of the
RangeKeyConditions data structure.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to return.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	scan_index_forward (bool [https://docs.python.org/2/library/functions.html#bool]) – Specified forward or backward
traversal of the index. Default is forward (True).

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	
scan(table_name, scan_filter=None, attributes_to_get=None, limit=None, count=False, exclusive_start_key=None, object_hook=None)

	Perform a scan of DynamoDB. This version is currently punting
and expecting you to provide a full and correct JSON body
which is passed as is to DynamoDB.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to scan.

	scan_filter (dict) – A Python version of the
ScanFilter data structure.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to return.

	count (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, Amazon DynamoDB returns a total
number of items for the Scan operation, even if the
operation has no matching items for the assigned filter.

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	
update_item(table_name, key, attribute_updates, expected=None, return_values=None, object_hook=None)

	Edits an existing item’s attributes. You can perform a conditional
update (insert a new attribute name-value pair if it doesn’t exist,
or replace an existing name-value pair if it has certain expected
attribute values).

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table.

	key (dict) – A Python version of the Key data structure
defined by DynamoDB which identifies the item to be updated.

	attribute_updates (dict) – A Python version of the AttributeUpdates
data structure defined by DynamoDB.

	expected (dict) – A Python version of the Expected
data structure defined by DynamoDB.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
update_table(table_name, provisioned_throughput)

	Updates the provisioned throughput for a given table.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to update.

	provisioned_throughput (dict) – A Python version of the
ProvisionedThroughput data structure defined by
DynamoDB.

boto.dynamodb.layer2

	
class boto.dynamodb.layer2.Layer2(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, host=None, debug=0, session_token=None)

	
	
batch_get_item(batch_list)

	Return a set of attributes for a multiple items in
multiple tables using their primary keys.

	Parameters:	batch_list (boto.dynamodb.batch.BatchList) – A BatchList object which consists of a
list of boto.dynamoddb.batch.Batch objects.
Each Batch object contains the information about one
batch of objects that you wish to retrieve in this
request.

	
build_key_from_values(schema, hash_key, range_key=None)

	Build a Key structure to be used for accessing items
in Amazon DynamoDB. This method takes the supplied hash_key
and optional range_key and validates them against the
schema. If there is a mismatch, a TypeError is raised.
Otherwise, a Python dict version of a Amazon DynamoDB Key
data structure is returned.

	Parameters:	
	hash_key (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str], or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The hash key of the item you are looking for.
The type of the hash key should match the type defined in
the schema.

	range_key (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The range key of the item your are looking for.
This should be supplied only if the schema requires a
range key. The type of the range key should match the
type defined in the schema.

	
create_schema(hash_key_name, hash_key_proto_value, range_key_name=None, range_key_proto_value=None)

	Create a Schema object used when creating a Table.

	Parameters:	
	hash_key_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the HashKey for the schema.

	hash_key_proto_value (int|long|float|str|unicode) – A sample or prototype of the type
of value you want to use for the HashKey.

	range_key_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the RangeKey for the schema.
This parameter is optional.

	range_key_proto_value (int|long|float|str|unicode) – A sample or prototype of the type
of value you want to use for the RangeKey. This parameter
is optional.

	
create_table(name, schema, read_units, write_units)

	Create a new Amazon DynamoDB table.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the desired table.

	schema (boto.dynamodb.schema.Schema) – The Schema object that defines the schema used
by this table.

	read_units (int [https://docs.python.org/2/library/functions.html#int]) – The value for ReadCapacityUnits.

	write_units (int [https://docs.python.org/2/library/functions.html#int]) – The value for WriteCapacityUnits.

	Return type:	boto.dynamodb.table.Table

	Returns:	A Table object representing the new Amazon DynamoDB table.

	
delete_item(item, expected_value=None, return_values=None)

	Delete the item from Amazon DynamoDB.

	Parameters:	
	item (boto.dynamodb.item.Item) – The Item to delete from Amazon DynamoDB.

	expected_value (dict) – A dictionary of name/value pairs that you expect.
This dictionary should have name/value pairs where the name
is the name of the attribute and the value is either the value
you are expecting or False if you expect the attribute not to
exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
delete_table(table)

	Delete this table and all items in it. After calling this
the Table objects status attribute will be set to ‘DELETING’.

	Parameters:	table (boto.dynamodb.table.Table) – The Table object that is being deleted.

	
describe_table(name)

	Retrieve information about an existing table.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the desired table.

	
dynamize_attribute_updates(pending_updates)

	Convert a set of pending item updates into the structure
required by Layer1.

	
dynamize_expected_value(expected_value)

	Convert an expected_value parameter into the data structure
required for Layer1.

	
dynamize_item(item)

	

	
dynamize_last_evaluated_key(last_evaluated_key)

	Convert a last_evaluated_key parameter into the data structure
required for Layer1.

	
dynamize_range_key_condition(range_key_condition)

	Convert a layer2 range_key_condition parameter into the
structure required by Layer1.

	
dynamize_request_items(batch_list)

	Convert a request_items parameter into the data structure
required for Layer1.

	
dynamize_scan_filter(scan_filter)

	Convert a layer2 scan_filter parameter into the
structure required by Layer1.

	
dynamize_value(val)

	Take a scalar Python value and return a dict consisting
of the Amazon DynamoDB type specification and the value that
needs to be sent to Amazon DynamoDB. If the type of the value
is not supported, raise a TypeError

	
get_dynamodb_type(val)

	Take a scalar Python value and return a string representing
the corresponding Amazon DynamoDB type. If the value passed in is
not a supported type, raise a TypeError.

	
get_item(table, hash_key, range_key=None, attributes_to_get=None, consistent_read=False, item_class=<class 'boto.dynamodb.item.Item'>)

	Retrieve an existing item from the table.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object from which the item is retrieved.

	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key (int|long|float|str|unicode) – The optional RangeKey of the requested item.
The type of the value must match the type defined in the
schema for the table.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	
get_table(name)

	Retrieve the Table object for an existing table.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the desired table.

	Return type:	boto.dynamodb.table.Table

	Returns:	A Table object representing the table.

	
list_tables(limit=None, start_table=None)

	Return a list of the names of all Tables associated with the
current account and region.
TODO - Layer2 should probably automatically handle pagination.

	Parameters:	
	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of tables to return.

	limit – The name of the table that starts the
list. If you ran a previous list_tables and not
all results were returned, the response dict would
include a LastEvaluatedTableName attribute. Use
that value here to continue the listing.

	
lookup(name)

	Retrieve the Table object for an existing table.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the desired table.

	Return type:	boto.dynamodb.table.Table

	Returns:	A Table object representing the table.

	
new_batch_list()

	Return a new, empty boto.dynamodb.batch.BatchList
object.

	
put_item(item, expected_value=None, return_values=None)

	Store a new item or completely replace an existing item
in Amazon DynamoDB.

	Parameters:	
	item (boto.dynamodb.item.Item) – The Item to write to Amazon DynamoDB.

	expected_value (dict) – A dictionary of name/value pairs that you expect.
This dictionary should have name/value pairs where the name
is the name of the attribute and the value is either the value
you are expecting or False if you expect the attribute not to
exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
query(table, hash_key, range_key_condition=None, attributes_to_get=None, request_limit=None, max_results=None, consistent_read=False, scan_index_forward=True, exclusive_start_key=None, item_class=<class 'boto.dynamodb.item.Item'>)

	Perform a query on the table.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object that is being queried.

	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key_condition (dict) – A dict where the key is either
a scalar value appropriate for the RangeKey in the schema
of the database or a tuple of such values. The value
associated with this key in the dict will be one of the
following conditions:

‘EQ’|’LE’|’LT’|’GE’|’GT’|’BEGINS_WITH’|’BETWEEN’

The only condition which expects or will accept a tuple
of values is ‘BETWEEN’, otherwise a scalar value should
be used as the key in the dict.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	request_limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to retrieve
from Amazon DynamoDB on each request. You may want to set
a specific request_limit based on the provisioned throughput
of your table. The default behavior is to retrieve as many
results as possible per request.

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of results that will
be retrieved from Amazon DynamoDB in total. For example,
if you only wanted to see the first 100 results from the
query, regardless of how many were actually available, you
could set max_results to 100 and the generator returned
from the query method will only yeild 100 results max.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	scan_index_forward (bool [https://docs.python.org/2/library/functions.html#bool]) – Specified forward or backward
traversal of the index. Default is forward (True).

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	Return type:	generator

	
scan(table, scan_filter=None, attributes_to_get=None, request_limit=None, max_results=None, count=False, exclusive_start_key=None, item_class=<class 'boto.dynamodb.item.Item'>)

	Perform a scan of DynamoDB.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object that is being scanned.

	scan_filter (A list of tuples) – A list of tuples where each tuple consists
of an attribute name, a comparison operator, and either
a scalar or tuple consisting of the values to compare
the attribute to. Valid comparison operators are shown below
along with the expected number of values that should be supplied.

	EQ - equal (1)

	NE - not equal (1)

	LE - less than or equal (1)

	LT - less than (1)

	GE - greater than or equal (1)

	GT - greater than (1)

	NOT_NULL - attribute exists (0, use None)

	NULL - attribute does not exist (0, use None)

	CONTAINS - substring or value in list (1)

	NOT_CONTAINS - absence of substring or value in list (1)

	BEGINS_WITH - substring prefix (1)

	IN - exact match in list (N)

	BETWEEN - >= first value, <= second value (2)

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	request_limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to retrieve
from Amazon DynamoDB on each request. You may want to set
a specific request_limit based on the provisioned throughput
of your table. The default behavior is to retrieve as many
results as possible per request.

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of results that will
be retrieved from Amazon DynamoDB in total. For example,
if you only wanted to see the first 100 results from the
query, regardless of how many were actually available, you
could set max_results to 100 and the generator returned
from the query method will only yeild 100 results max.

	count (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, Amazon DynamoDB returns a total
number of items for the Scan operation, even if the
operation has no matching items for the assigned filter.

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	Return type:	generator

	
update_item(item, expected_value=None, return_values=None)

	Commit pending item updates to Amazon DynamoDB.

	Parameters:	
	item (boto.dynamodb.item.Item) – The Item to update in Amazon DynamoDB. It is expected
that you would have called the add_attribute, put_attribute
and/or delete_attribute methods on this Item prior to calling
this method. Those queued changes are what will be updated.

	expected_value (dict) – A dictionary of name/value pairs that you
expect. This dictionary should have name/value pairs where the
name is the name of the attribute and the value is either the
value you are expecting or False if you expect the attribute
not to exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute name/value pairs
before they were updated. Possible values are: None, ‘ALL_OLD’,
‘UPDATED_OLD’, ‘ALL_NEW’ or ‘UPDATED_NEW’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content of the old item
is returned. If ‘ALL_NEW’ is specified, then all the attributes of
the new version of the item are returned. If ‘UPDATED_NEW’ is
specified, the new versions of only the updated attributes are
returned.

	
update_throughput(table, read_units, write_units)

	Update the ProvisionedThroughput for the Amazon DynamoDB Table.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object whose throughput is being updated.

	read_units (int [https://docs.python.org/2/library/functions.html#int]) – The new value for ReadCapacityUnits.

	write_units (int [https://docs.python.org/2/library/functions.html#int]) – The new value for WriteCapacityUnits.

	
boto.dynamodb.layer2.convert_num(s)

	

	
boto.dynamodb.layer2.is_num(n)

	

	
boto.dynamodb.layer2.is_str(n)

	

	
boto.dynamodb.layer2.item_object_hook(dct)

	A custom object hook for use when decoding JSON item bodys.
This hook will transform Amazon DynamoDB JSON responses to something
that maps directly to native Python types.

boto.dynamodb.table

	
class boto.dynamodb.table.Table(layer2, response=None)

	An Amazon DynamoDB table.

	Variables:	
	name – The name of the table.

	create_time – The date and time that the table was created.

	status – The current status of the table. One of:
‘ACTIVE’, ‘UPDATING’, ‘DELETING’.

	schema – A boto.dynamodb.schema.Schema object representing
the schema defined for the table.

	item_count – The number of items in the table. This value is
set only when the Table object is created or refreshed and
may not reflect the actual count.

	size_bytes – Total size of the specified table, in bytes.
Amazon DynamoDB updates this value approximately every six hours.
Recent changes might not be reflected in this value.

	read_units – The ReadCapacityUnits of the tables
Provisioned Throughput.

	write_units – The WriteCapacityUnits of the tables
Provisioned Throughput.

	schema – The Schema object associated with the table.

	
create_time

	

	
delete()

	Delete this table and all items in it. After calling this
the Table objects status attribute will be set to ‘DELETING’.

	
get_item(hash_key, range_key=None, attributes_to_get=None, consistent_read=False, item_class=<class 'boto.dynamodb.item.Item'>)

	Retrieve an existing item from the table.

	Parameters:	
	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key (int|long|float|str|unicode) – The optional RangeKey of the requested item.
The type of the value must match the type defined in the
schema for the table.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	
has_item(hash_key, range_key=None, consistent_read=False)

	Checks the table to see if the Item with the specified hash_key
exists. This may save a tiny bit of time/bandwidth over a
straight get_item() if you have no intention to touch
the data that is returned, since this method specifically tells
Amazon not to return anything but the Item’s key.

	Parameters:	
	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key (int|long|float|str|unicode) – The optional RangeKey of the requested item.
The type of the value must match the type defined in the
schema for the table.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if the Item exists, False if not.

	
item_count

	

	
lookup(hash_key, range_key=None, attributes_to_get=None, consistent_read=False, item_class=<class 'boto.dynamodb.item.Item'>)

	Retrieve an existing item from the table.

	Parameters:	
	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key (int|long|float|str|unicode) – The optional RangeKey of the requested item.
The type of the value must match the type defined in the
schema for the table.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	
name

	

	
new_item(hash_key, range_key=None, attrs=None)

	Return an new, unsaved Item which can later be PUT to
Amazon DynamoDB.

	
query(hash_key, range_key_condition=None, attributes_to_get=None, request_limit=None, max_results=None, consistent_read=False, scan_index_forward=True, exclusive_start_key=None, item_class=<class 'boto.dynamodb.item.Item'>)

	Perform a query on the table.

	Parameters:	
	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key_condition (dict) – A dict where the key is either
a scalar value appropriate for the RangeKey in the schema
of the database or a tuple of such values. The value
associated with this key in the dict will be one of the
following conditions:

‘EQ’|’LE’|’LT’|’GE’|’GT’|’BEGINS_WITH’|’BETWEEN’

The only condition which expects or will accept a tuple
of values is ‘BETWEEN’, otherwise a scalar value should
be used as the key in the dict.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	request_limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to retrieve
from Amazon DynamoDB on each request. You may want to set
a specific request_limit based on the provisioned throughput
of your table. The default behavior is to retrieve as many
results as possible per request.

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of results that will
be retrieved from Amazon DynamoDB in total. For example,
if you only wanted to see the first 100 results from the
query, regardless of how many were actually available, you
could set max_results to 100 and the generator returned
from the query method will only yeild 100 results max.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	scan_index_forward (bool [https://docs.python.org/2/library/functions.html#bool]) – Specified forward or backward
traversal of the index. Default is forward (True).

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	
read_units

	

	
refresh(wait_for_active=False, retry_seconds=5)

	Refresh all of the fields of the Table object by calling
the underlying DescribeTable request.

	Parameters:	
	wait_for_active (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this command will not return
until the table status, as returned from Amazon DynamoDB, is
‘ACTIVE’.

	retry_seconds (int [https://docs.python.org/2/library/functions.html#int]) – If wait_for_active is True, this
parameter controls the number of seconds of delay between
calls to update_table in Amazon DynamoDB. Default is 5 seconds.

	
scan(scan_filter=None, attributes_to_get=None, request_limit=None, max_results=None, count=False, exclusive_start_key=None, item_class=<class 'boto.dynamodb.item.Item'>)

	Scan through this table, this is a very long
and expensive operation, and should be avoided if
at all possible.

	Parameters:	
	scan_filter (A list of tuples) – A list of tuples where each tuple consists
of an attribute name, a comparison operator, and either
a scalar or tuple consisting of the values to compare
the attribute to. Valid comparison operators are shown below
along with the expected number of values that should be supplied.

	EQ - equal (1)

	NE - not equal (1)

	LE - less than or equal (1)

	LT - less than (1)

	GE - greater than or equal (1)

	GT - greater than (1)

	NOT_NULL - attribute exists (0, use None)

	NULL - attribute does not exist (0, use None)

	CONTAINS - substring or value in list (1)

	NOT_CONTAINS - absence of substring or value in list (1)

	BEGINS_WITH - substring prefix (1)

	IN - exact match in list (N)

	BETWEEN - >= first value, <= second value (2)

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	request_limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to retrieve
from Amazon DynamoDB on each request. You may want to set
a specific request_limit based on the provisioned throughput
of your table. The default behavior is to retrieve as many
results as possible per request.

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of results that will
be retrieved from Amazon DynamoDB in total. For example,
if you only wanted to see the first 100 results from the
query, regardless of how many were actually available, you
could set max_results to 100 and the generator returned
from the query method will only yeild 100 results max.

	count (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, Amazon DynamoDB returns a total
number of items for the Scan operation, even if the
operation has no matching items for the assigned filter.

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	Return type:	generator

	
schema

	

	
size_bytes

	

	
status

	

	
update_from_response(response)

	Update the state of the Table object based on the response
data received from Amazon DynamoDB.

	
update_throughput(read_units, write_units)

	Update the ProvisionedThroughput for the Amazon DynamoDB Table.

	Parameters:	
	read_units (int [https://docs.python.org/2/library/functions.html#int]) – The new value for ReadCapacityUnits.

	write_units (int [https://docs.python.org/2/library/functions.html#int]) – The new value for WriteCapacityUnits.

	
write_units

	

boto.dynamodb.schema

	
class boto.dynamodb.schema.Schema(schema_dict)

	Represents a DynamoDB schema.

	Variables:	
	hash_key_name – The name of the hash key of the schema.

	hash_key_type – The DynamoDB type specification for the
hash key of the schema.

	range_key_name – The name of the range key of the schema
or None if no range key is defined.

	range_key_type – The DynamoDB type specification for the
range key of the schema or None if no range key is defined.

	dict – The underlying Python dictionary that needs to be
passed to Layer1 methods.

	
dict

	

	
hash_key_name

	

	
hash_key_type

	

	
range_key_name

	

	
range_key_type

	

boto.dynamodb.item

	
class boto.dynamodb.item.Item(table, hash_key=None, range_key=None, attrs=None)

	An item in Amazon DynamoDB.

	Variables:	
	hash_key – The HashKey of this item.

	range_key – The RangeKey of this item or None if no RangeKey
is defined.

	hash_key_name – The name of the HashKey associated with this item.

	range_key_name – The name of the RangeKey associated with this item.

	table – The Table this item belongs to.

	
add_attribute(attr_name, attr_value)

	Queue the addition of an attribute to an item in DynamoDB.
This will eventually result in an UpdateItem request being issued
with an update action of ADD when the save method is called.

	Parameters:	
	attr_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the attribute you want to alter.

	attr_value (int|long|float|set) – Value which is to be added to the attribute.

	
delete(expected_value=None, return_values=None)

	Delete the item from DynamoDB.

	Parameters:	
	expected_value (dict) – A dictionary of name/value pairs that you expect.
This dictionary should have name/value pairs where the name
is the name of the attribute and the value is either the value
you are expecting or False if you expect the attribute not to
exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
delete_attribute(attr_name, attr_value=None)

	Queue the deletion of an attribute from an item in DynamoDB.
This call will result in a UpdateItem request being issued
with update action of DELETE when the save method is called.

	Parameters:	
	attr_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the attribute you want to alter.

	attr_value (set) – A set of values to be removed from the attribute.
This parameter is optional. If None, the whole attribute is
removed from the item.

	
hash_key

	

	
hash_key_name

	

	
put(expected_value=None, return_values=None)

	Store a new item or completely replace an existing item
in Amazon DynamoDB.

	Parameters:	
	expected_value (dict) – A dictionary of name/value pairs that you expect.
This dictionary should have name/value pairs where the name
is the name of the attribute and the value is either the value
you are expecting or False if you expect the attribute not to
exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
put_attribute(attr_name, attr_value)

	Queue the putting of an attribute to an item in DynamoDB.
This call will result in an UpdateItem request being issued
with the update action of PUT when the save method is called.

	Parameters:	
	attr_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the attribute you want to alter.

	attr_value (int|long|float|str|set) – New value of the attribute.

	
range_key

	

	
range_key_name

	

	
save(expected_value=None, return_values=None)

	Commits pending updates to Amazon DynamoDB.

	Parameters:	
	expected_value (dict) – A dictionary of name/value pairs that
you expect. This dictionary should have name/value pairs
where the name is the name of the attribute and the value is
either the value you are expecting or False if you expect
the attribute not to exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute name/value pairs
before they were updated. Possible values are: None, ‘ALL_OLD’,
‘UPDATED_OLD’, ‘ALL_NEW’ or ‘UPDATED_NEW’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content of the old item
is returned. If ‘ALL_NEW’ is specified, then all the attributes of
the new version of the item are returned. If ‘UPDATED_NEW’ is
specified, the new versions of only the updated attributes are
returned.

boto.dynamodb.batch

	
class boto.dynamodb.batch.Batch(table, keys, attributes_to_get=None)

	

	Variables:	
	table – The Table object from which the item is retrieved.

	keys – A list of scalar or tuple values. Each element in the
list represents one Item to retrieve. If the schema for the
table has both a HashKey and a RangeKey, each element in the
list should be a tuple consisting of (hash_key, range_key). If
the schema for the table contains only a HashKey, each element
in the list should be a scalar value of the appropriate type
for the table schema.

	attributes_to_get – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	
class boto.dynamodb.batch.BatchList(layer2)

	A subclass of a list object that contains a collection of
boto.dynamodb.batch.Batch objects.

	
add_batch(table, keys, attributes_to_get=None)

	Add a Batch to this BatchList.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object in which the items are contained.

	keys (list) – A list of scalar or tuple values. Each element in the
list represents one Item to retrieve. If the schema for the
table has both a HashKey and a RangeKey, each element in the
list should be a tuple consisting of (hash_key, range_key). If
the schema for the table contains only a HashKey, each element
in the list should be a scalar value of the appropriate type
for the table schema.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	
submit()

	

RDS

boto.rds

	
class boto.rds.RDSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/')

	
	
APIVersion = '2011-04-01'

	

	
DefaultRegionEndpoint = 'rds.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
authorize_dbsecurity_group(group_name, cidr_ip=None, ec2_security_group_name=None, ec2_security_group_owner_id=None)

	Add a new rule to an existing security group.
You need to pass in either src_security_group_name and
src_security_group_owner_id OR a CIDR block but not both.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are adding
the rule to.

	ec2_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the EC2 security group
you are granting access to.

	ec2_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the EC2
security group you are granting
access to.

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are providing access to.
See http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
create_dbinstance(id, allocated_storage, instance_class, master_username, master_password, port=3306, engine='MySQL5.1', db_name=None, param_group=None, security_groups=None, availability_zone=None, preferred_maintenance_window=None, backup_retention_period=None, preferred_backup_window=None, multi_az=False, engine_version=None, auto_minor_version_upgrade=True)

	Create a new DBInstance.

	Parameters:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the new instance.
Must contain 1-63 alphanumeric characters.
First character must be a letter.
May not end with a hyphen or contain two consecutive hyphens

	allocated_storage (int [https://docs.python.org/2/library/functions.html#int]) – Initially allocated storage size, in GBs.
Valid values are [5-1024]

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of
the DBInstance. Valid values are:

	db.m1.small

	db.m1.large

	db.m1.xlarge

	db.m2.xlarge

	db.m2.2xlarge

	db.m2.4xlarge

	engine (str [https://docs.python.org/2/library/functions.html#str]) – Name of database engine. Must be MySQL5.1 for now.

	master_username (str [https://docs.python.org/2/library/functions.html#str]) – Name of master user for the DBInstance.
Must be 1-15 alphanumeric characters, first
must be a letter.

	master_password (str [https://docs.python.org/2/library/functions.html#str]) – Password of master user for the DBInstance.
Must be 4-16 alphanumeric characters.

	port (int [https://docs.python.org/2/library/functions.html#int]) – Port number on which database accepts connections.
Valid values [1115-65535]. Defaults to 3306.

	db_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of a database to create when the DBInstance
is created. Default is to create no databases.

	param_group (str [https://docs.python.org/2/library/functions.html#str]) – Name of DBParameterGroup to associate with
this DBInstance. If no groups are specified
no parameter groups will be used.

	security_groups (list of str or list of DBSecurityGroup objects) – List of names of DBSecurityGroup to authorize on
this DBInstance.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Name of the availability zone to place
DBInstance into.

	preferred_maintenance_window (str [https://docs.python.org/2/library/functions.html#str]) – The weekly time range (in UTC)
during which maintenance can occur.
Default is Sun:05:00-Sun:09:00

	backup_retention_period (int [https://docs.python.org/2/library/functions.html#int]) – The number of days for which automated
backups are retained. Setting this to
zero disables automated backups.

	preferred_backup_window (str [https://docs.python.org/2/library/functions.html#str]) – The daily time range during which
automated backups are created (if
enabled). Must be in h24:mi-hh24:mi
format (UTC).

	multi_az (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, specifies the DB Instance will be
deployed in multiple availability zones.

	engine_version (str [https://docs.python.org/2/library/functions.html#str]) – Version number of the database engine to use.

	auto_minor_version_upgrade (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicates that minor engine
upgrades will be applied
automatically to the Read Replica
during the maintenance window.
Default is True.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The new db instance.

	
create_dbinstance_read_replica(id, source_id, instance_class=None, port=3306, availability_zone=None, auto_minor_version_upgrade=None)

	Create a new DBInstance Read Replica.

	Parameters:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the new instance.
Must contain 1-63 alphanumeric characters.
First character must be a letter.
May not end with a hyphen or contain two consecutive hyphens

	source_id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the DB Instance for which this
DB Instance will act as a Read Replica.

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Default is to inherit from
the source DB Instance.

Valid values are:

	db.m1.small

	db.m1.large

	db.m1.xlarge

	db.m2.xlarge

	db.m2.2xlarge

	db.m2.4xlarge

	port (int [https://docs.python.org/2/library/functions.html#int]) – Port number on which database accepts connections.
Default is to inherit from source DB Instance.
Valid values [1115-65535]. Defaults to 3306.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Name of the availability zone to place
DBInstance into.

	auto_minor_version_upgrade (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicates that minor engine
upgrades will be applied
automatically to the Read Replica
during the maintenance window.
Default is to inherit this value
from the source DB Instance.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The new db instance.

	
create_dbsecurity_group(name, description=None)

	Create a new security group for your account.
This will create the security group within the region you
are currently connected to.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new security group

	description (string [https://docs.python.org/2/library/string.html#module-string]) – The description of the new security group

	Return type:	boto.rds.dbsecuritygroup.DBSecurityGroup

	Returns:	The newly created DBSecurityGroup

	
create_dbsnapshot(snapshot_id, dbinstance_id)

	Create a new DB snapshot.

	Parameters:	
	snapshot_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier for the DBSnapshot

	dbinstance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The source identifier for the RDS instance from
which the snapshot is created.

	Return type:	boto.rds.dbsnapshot.DBSnapshot

	Returns:	The newly created DBSnapshot

	
create_parameter_group(name, engine='MySQL5.1', description='')

	Create a new dbparameter group for your account.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new dbparameter group

	engine (str [https://docs.python.org/2/library/functions.html#str]) – Name of database engine.

	description (string [https://docs.python.org/2/library/string.html#module-string]) – The description of the new security group

	Return type:	boto.rds.dbsecuritygroup.DBSecurityGroup

	Returns:	The newly created DBSecurityGroup

	
delete_dbinstance(id, skip_final_snapshot=False, final_snapshot_id='')

	Delete an existing DBInstance.

	Parameters:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the new instance.

	skip_final_snapshot (bool [https://docs.python.org/2/library/functions.html#bool]) – This parameter determines whether a final
db snapshot is created before the instance
is deleted. If True, no snapshot
is created. If False, a snapshot
is created before deleting the instance.

	final_snapshot_id (str [https://docs.python.org/2/library/functions.html#str]) – If a final snapshot is requested, this
is the identifier used for that snapshot.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The deleted db instance.

	
delete_dbsecurity_group(name)

	Delete a DBSecurityGroup from your account.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the DBSecurityGroup to delete

	
delete_dbsnapshot(identifier)

	Delete a DBSnapshot

	Parameters:	identifier (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier of the DBSnapshot to delete

	
delete_parameter_group(name)

	Delete a DBSecurityGroup from your account.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the DBSecurityGroup to delete

	
get_all_dbinstances(instance_id=None, max_records=None, marker=None)

	Retrieve all the DBInstances in your account.

	Parameters:	
	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – DB Instance identifier. If supplied, only
information this instance will be returned.
Otherwise, info about all DB Instances will
be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of boto.rds.dbinstance.DBInstance

	
get_all_dbparameter_groups(groupname=None, max_records=None, marker=None)

	Get all parameter groups associated with your account in a region.

	Parameters:	
	groupname (str [https://docs.python.org/2/library/functions.html#str]) – The name of the DBParameter group to retrieve.
If not provided, all DBParameter groups will be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of boto.ec2.parametergroup.ParameterGroup

	
get_all_dbparameters(groupname, source=None, max_records=None, marker=None)

	Get all parameters associated with a ParameterGroup

	Parameters:	
	groupname (str [https://docs.python.org/2/library/functions.html#str]) – The name of the DBParameter group to retrieve.

	source (str [https://docs.python.org/2/library/functions.html#str]) – Specifies which parameters to return.
If not specified, all parameters will be returned.
Valid values are: user|system|engine-default

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	boto.ec2.parametergroup.ParameterGroup

	Returns:	The ParameterGroup

	
get_all_dbsecurity_groups(groupname=None, max_records=None, marker=None)

	Get all security groups associated with your account in a region.

	Parameters:	
	groupnames (list) – A list of the names of security groups to retrieve.
If not provided, all security groups will
be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of boto.rds.dbsecuritygroup.DBSecurityGroup

	
get_all_dbsnapshots(snapshot_id=None, instance_id=None, max_records=None, marker=None)

	Get information about DB Snapshots.

	Parameters:	
	snapshot_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier of an RDS snapshot.
If not provided, all RDS snapshots will be returned.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The identifier of a DBInstance. If provided,
only the DBSnapshots related to that instance will
be returned.
If not provided, all RDS snapshots will be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of boto.rds.dbsnapshot.DBSnapshot

	
get_all_events(source_identifier=None, source_type=None, start_time=None, end_time=None, max_records=None, marker=None)

	Get information about events related to your DBInstances,
DBSecurityGroups and DBParameterGroups.

	Parameters:	
	source_identifier (str [https://docs.python.org/2/library/functions.html#str]) – If supplied, the events returned will be
limited to those that apply to the identified
source. The value of this parameter depends
on the value of source_type. If neither
parameter is specified, all events in the time
span will be returned.

	source_type (str [https://docs.python.org/2/library/functions.html#str]) – Specifies how the source_identifier should
be interpreted. Valid values are:
b-instance | db-security-group |
db-parameter-group | db-snapshot

	start_time (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The beginning of the time interval for events.
If not supplied, all available events will
be returned.

	end_time (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The ending of the time interval for events.
If not supplied, all available events will
be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of class:boto.rds.event.Event

	
modify_dbinstance(id, param_group=None, security_groups=None, preferred_maintenance_window=None, master_password=None, allocated_storage=None, instance_class=None, backup_retention_period=None, preferred_backup_window=None, multi_az=False, apply_immediately=False)

	Modify an existing DBInstance.

	Parameters:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the new instance.

	security_groups (list of str or list of DBSecurityGroup objects) – List of names of DBSecurityGroup to authorize on
this DBInstance.

	preferred_maintenance_window (str [https://docs.python.org/2/library/functions.html#str]) – The weekly time range (in UTC)
during which maintenance can
occur.
Default is Sun:05:00-Sun:09:00

	master_password (str [https://docs.python.org/2/library/functions.html#str]) – Password of master user for the DBInstance.
Must be 4-15 alphanumeric characters.

	allocated_storage (int [https://docs.python.org/2/library/functions.html#int]) – The new allocated storage size, in GBs.
Valid values are [5-1024]

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Changes will be applied at
next maintenance window unless
apply_immediately is True.

Valid values are:

	db.m1.small

	db.m1.large

	db.m1.xlarge

	db.m2.xlarge

	db.m2.2xlarge

	db.m2.4xlarge

	apply_immediately (bool [https://docs.python.org/2/library/functions.html#bool]) – If true, the modifications will be applied
as soon as possible rather than waiting for
the next preferred maintenance window.

	backup_retention_period (int [https://docs.python.org/2/library/functions.html#int]) – The number of days for which automated
backups are retained. Setting this to
zero disables automated backups.

	preferred_backup_window (str [https://docs.python.org/2/library/functions.html#str]) – The daily time range during which
automated backups are created (if
enabled). Must be in h24:mi-hh24:mi
format (UTC).

	multi_az (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, specifies the DB Instance will be
deployed in multiple availability zones.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The modified db instance.

	
modify_parameter_group(name, parameters=None)

	Modify a parameter group for your account.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new parameter group

	parameters (list of boto.rds.parametergroup.Parameter) – The new parameters

	Return type:	boto.rds.parametergroup.ParameterGroup

	Returns:	The newly created ParameterGroup

	
reboot_dbinstance(id)

	Reboot DBInstance.

	Parameters:	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier of the instance.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The rebooting db instance.

	
reset_parameter_group(name, reset_all_params=False, parameters=None)

	Resets some or all of the parameters of a ParameterGroup to the
default value

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the ParameterGroup to reset

	parameters (list of boto.rds.parametergroup.Parameter) – The parameters to reset. If not supplied,
all parameters will be reset.

	
restore_dbinstance_from_dbsnapshot(identifier, instance_id, instance_class, port=None, availability_zone=None)

	Create a new DBInstance from a DB snapshot.

	Parameters:	
	identifier (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier for the DBSnapshot

	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The source identifier for the RDS instance from
which the snapshot is created.

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Valid values are:
db.m1.small | db.m1.large | db.m1.xlarge |
db.m2.2xlarge | db.m2.4xlarge

	port (int [https://docs.python.org/2/library/functions.html#int]) – Port number on which database accepts connections.
Valid values [1115-65535]. Defaults to 3306.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Name of the availability zone to place
DBInstance into.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The newly created DBInstance

	
restore_dbinstance_from_point_in_time(source_instance_id, target_instance_id, use_latest=False, restore_time=None, dbinstance_class=None, port=None, availability_zone=None)

	Create a new DBInstance from a point in time.

	Parameters:	
	source_instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier for the source DBInstance.

	target_instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier of the new DBInstance.

	use_latest (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the latest snapshot availabile will
be used.

	restore_time (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The date and time to restore from. Only
used if use_latest is False.

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Valid values are:
db.m1.small | db.m1.large | db.m1.xlarge |
db.m2.2xlarge | db.m2.4xlarge

	port (int [https://docs.python.org/2/library/functions.html#int]) – Port number on which database accepts connections.
Valid values [1115-65535]. Defaults to 3306.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Name of the availability zone to place
DBInstance into.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The newly created DBInstance

	
revoke_dbsecurity_group(group_name, ec2_security_group_name=None, ec2_security_group_owner_id=None, cidr_ip=None)

	Remove an existing rule from an existing security group.
You need to pass in either ec2_security_group_name and
ec2_security_group_owner_id OR a CIDR block.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are removing
the rule from.

	ec2_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the EC2 security group
from which you are removing access.

	ec2_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the EC2
security from which you are
removing access.

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block from which you are removing access.
See http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
revoke_security_group(group_name, ec2_security_group_name=None, ec2_security_group_owner_id=None, cidr_ip=None)

	Remove an existing rule from an existing security group.
You need to pass in either ec2_security_group_name and
ec2_security_group_owner_id OR a CIDR block.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are removing
the rule from.

	ec2_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the EC2 security group
from which you are removing access.

	ec2_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the EC2
security from which you are
removing access.

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block from which you are removing access.
See http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
boto.rds.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.ec2.connection.EC2Connection.
Any additional parameters after the region_name are passed on to
the connect method of the region object.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.ec2.connection.EC2Connection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.rds.regions()

	Get all available regions for the RDS service.

	Return type:	list

	Returns:	A list of boto.rds.regioninfo.RDSRegionInfo

boto.rds.dbinstance

	
class boto.rds.dbinstance.DBInstance(connection=None, id=None)

	Represents a RDS DBInstance

	
endElement(name, value, connection)

	

	
modify(param_group=None, security_groups=None, preferred_maintenance_window=None, master_password=None, allocated_storage=None, instance_class=None, backup_retention_period=None, preferred_backup_window=None, multi_az=False, apply_immediately=False)

	Modify this DBInstance.

	Parameters:	
	security_groups (list of str or list of DBSecurityGroup objects) – List of names of DBSecurityGroup to authorize on
this DBInstance.

	preferred_maintenance_window (str [https://docs.python.org/2/library/functions.html#str]) – The weekly time range (in UTC)
during which maintenance can
occur.
Default is Sun:05:00-Sun:09:00

	master_password (str [https://docs.python.org/2/library/functions.html#str]) – Password of master user for the DBInstance.
Must be 4-15 alphanumeric characters.

	allocated_storage (int [https://docs.python.org/2/library/functions.html#int]) – The new allocated storage size, in GBs.
Valid values are [5-1024]

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Changes will be applied at
next maintenance window unless
apply_immediately is True.

Valid values are:

	db.m1.small

	db.m1.large

	db.m1.xlarge

	db.m2.xlarge

	db.m2.2xlarge

	db.m2.4xlarge

	apply_immediately (bool [https://docs.python.org/2/library/functions.html#bool]) – If true, the modifications will be applied
as soon as possible rather than waiting for
the next preferred maintenance window.

	backup_retention_period (int [https://docs.python.org/2/library/functions.html#int]) – The number of days for which automated
backups are retained. Setting this to
zero disables automated backups.

	preferred_backup_window (str [https://docs.python.org/2/library/functions.html#str]) – The daily time range during which
automated backups are created (if
enabled). Must be in h24:mi-hh24:mi
format (UTC).

	multi_az (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, specifies the DB Instance will be
deployed in multiple availability zones.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The modified db instance.

	
reboot()

	Reboot this DBInstance

	Return type:	boto.rds.dbsnapshot.DBSnapshot

	Returns:	The newly created DBSnapshot

	
snapshot(snapshot_id)

	Create a new DB snapshot of this DBInstance.

	Parameters:	identifier (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier for the DBSnapshot

	Return type:	boto.rds.dbsnapshot.DBSnapshot

	Returns:	The newly created DBSnapshot

	
startElement(name, attrs, connection)

	

	
stop(skip_final_snapshot=False, final_snapshot_id='')

	Delete this DBInstance.

	Parameters:	
	skip_final_snapshot (bool [https://docs.python.org/2/library/functions.html#bool]) – This parameter determines whether a final
db snapshot is created before the instance
is deleted. If True, no snapshot is created.
If False, a snapshot is created before
deleting the instance.

	final_snapshot_id (str [https://docs.python.org/2/library/functions.html#str]) – If a final snapshot is requested, this
is the identifier used for that snapshot.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The deleted db instance.

	
update(validate=False)

	Update the DB instance’s status information by making a call to fetch
the current instance attributes from the service.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
instance the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
class boto.rds.dbinstance.PendingModifiedValues

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.rds.dbsecuritygroup

Represents an DBSecurityGroup

	
class boto.rds.dbsecuritygroup.DBSecurityGroup(connection=None, owner_id=None, name=None, description=None)

	
	
authorize(cidr_ip=None, ec2_group=None)

	Add a new rule to this DBSecurity group.
You need to pass in either a CIDR block to authorize or
and EC2 SecurityGroup.

@type cidr_ip: string
@param cidr_ip: A valid CIDR IP range to authorize

@type ec2_group: boto.ec2.securitygroup.SecurityGroup>

@rtype: bool
@return: True if successful.

	
delete()

	

	
endElement(name, value, connection)

	

	
revoke(cidr_ip=None, ec2_group=None)

	Revoke access to a CIDR range or EC2 SecurityGroup.
You need to pass in either a CIDR block or
an EC2 SecurityGroup from which to revoke access.

@type cidr_ip: string
@param cidr_ip: A valid CIDR IP range to revoke

@type ec2_group: boto.ec2.securitygroup.SecurityGroup>

@rtype: bool
@return: True if successful.

	
startElement(name, attrs, connection)

	

	
class boto.rds.dbsecuritygroup.EC2SecurityGroup(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.rds.dbsecuritygroup.IPRange(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.rds.dbsnapshot

	
class boto.rds.dbsnapshot.DBSnapshot(connection=None, id=None)

	Represents a RDS DB Snapshot

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.rds.event

	
class boto.rds.event.Event(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.rds.parametergroup

	
class boto.rds.parametergroup.Parameter(group=None, name=None)

	Represents a RDS Parameter

	
ValidApplyMethods = ['immediate', 'pending-reboot']

	

	
ValidApplyTypes = ['static', 'dynamic']

	

	
ValidSources = ['user', 'system', 'engine-default']

	

	
ValidTypes = {'integer': <type 'int'>, 'boolean': <type 'bool'>, 'string': <type 'str'>}

	

	
apply(immediate=False)

	

	
endElement(name, value, connection)

	

	
get_value()

	

	
merge(d, i)

	

	
set_value(value)

	

	
startElement(name, attrs, connection)

	

	
value

	

	
class boto.rds.parametergroup.ParameterGroup(connection=None)

	
	
add_param(name, value, apply_method)

	

	
endElement(name, value, connection)

	

	
get_params()

	

	
modifiable()

	

	
startElement(name, attrs, connection)

	

cloudformation

boto.cloudformation

boto.cloudformation.stack

	
class boto.cloudformation.stack.Output(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.stack.Parameter(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.stack.Stack(connection=None)

	
	
delete()

	

	
describe_events(next_token=None)

	

	
describe_resource(logical_resource_id)

	

	
describe_resources(logical_resource_id=None, physical_resource_id=None)

	

	
endElement(name, value, connection)

	

	
get_template()

	

	
list_resources(next_token=None)

	

	
startElement(name, attrs, connection)

	

	
update()

	

	
class boto.cloudformation.stack.StackEvent(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
valid_states = ('CREATE_IN_PROGRESS', 'CREATE_FAILED', 'CREATE_COMPLETE', 'DELETE_IN_PROGRESS', 'DELETE_FAILED', 'DELETE_COMPLETE')

	

	
class boto.cloudformation.stack.StackResource(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.stack.StackResourceSummary(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.stack.StackSummary(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.cloudformation.template

	
class boto.cloudformation.template.Template(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.template.TemplateParameter(parent)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

IAM

boto.iam

boto.iam.connection

	
class boto.iam.connection.IAMConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host='iam.amazonaws.com', debug=0, https_connection_factory=None, path='/')

	
	
APIVersion = '2010-05-08'

	

	
add_user_to_group(group_name, user_name)

	Add a user to a group

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The to be added to the group.

	
create_access_key(user_name=None)

	Create a new AWS Secret Access Key and corresponding AWS Access Key ID
for the specified user. The default status for new keys is Active

If the user_name is not specified, the user_name is determined
implicitly based on the AWS Access Key ID used to sign the request.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
create_account_alias(alias)

	Creates a new alias for the AWS account.

For more information on account id aliases, please see
http://goo.gl/ToB7G

	Parameters:	alias (string [https://docs.python.org/2/library/string.html#module-string]) – The alias to attach to the account.

	
create_group(group_name, path='/')

	Create a group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new group

	path (string [https://docs.python.org/2/library/string.html#module-string]) – The path to the group (Optional). Defaults to /.

	
create_login_profile(user_name, password)

	Creates a login profile for the specified user, give the user the
ability to access AWS services and the AWS Management Console.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user

	password (string [https://docs.python.org/2/library/string.html#module-string]) – The new password for the user

	
create_user(user_name, path='/')

	Create a user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new user

	path (string [https://docs.python.org/2/library/string.html#module-string]) – The path in which the user will be created.
Defaults to /.

	
deactivate_mfa_device(user_name, serial_number)

	Deactivates the specified MFA device and removes it from
association with the user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	seriasl_number – The serial number which uniquely identifies
the MFA device.

	
delete_access_key(access_key_id, user_name=None)

	Delete an access key associated with a user.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the access key to be deleted.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
delete_account_alias(alias)

	Deletes an alias for the AWS account.

For more information on account id aliases, please see
http://goo.gl/ToB7G

	Parameters:	alias (string [https://docs.python.org/2/library/string.html#module-string]) – The alias to remove from the account.

	
delete_group(group_name)

	Delete a group. The group must not contain any Users or
have any attached policies

	Parameters:	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group to delete.

	
delete_group_policy(group_name, policy_name)

	Deletes the specified policy document for the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to delete.

	
delete_login_profile(user_name)

	Deletes the login profile associated with the specified user.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user to delete.

	
delete_server_cert(cert_name)

	Delete the specified server certificate.

	Parameters:	cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the server certificate you want
to delete.

	
delete_signing_cert(cert_id, user_name=None)

	Delete a signing certificate associated with a user.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	cert_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the certificate.

	
delete_user(user_name)

	Delete a user including the user’s path, GUID and ARN.

If the user_name is not specified, the user_name is determined
implicitly based on the AWS Access Key ID used to sign the request.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user to delete.

	
delete_user_policy(user_name, policy_name)

	Deletes the specified policy document for the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to delete.

	
enable_mfa_device(user_name, serial_number, auth_code_1, auth_code_2)

	Enables the specified MFA device and associates it with the
specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	seriasl_number – The serial number which uniquely identifies
the MFA device.

	auth_code_1 (string [https://docs.python.org/2/library/string.html#module-string]) – An authentication code emitted by the device.

	auth_code_2 (string [https://docs.python.org/2/library/string.html#module-string]) – A subsequent authentication code emitted
by the device.

	
get_account_alias()

	Get the alias for the current account.

This is referred to in the docs as list_account_aliases,
but it seems you can only have one account alias currently.

For more information on account id aliases, please see
http://goo.gl/ToB7G

	
get_account_summary()

	Get the alias for the current account.

This is referred to in the docs as list_account_aliases,
but it seems you can only have one account alias currently.

For more information on account id aliases, please see
http://goo.gl/ToB7G

	
get_all_access_keys(user_name, marker=None, max_items=None)

	Get all access keys associated with an account.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_group_policies(group_name, marker=None, max_items=None)

	List the names of the policies associated with the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group the policy is associated with.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_groups(path_prefix='/', marker=None, max_items=None)

	List the groups that have the specified path prefix.

	Parameters:	
	path_prefix (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, only groups whose paths match
the provided prefix will be returned.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_mfa_devices(user_name, marker=None, max_items=None)

	Get all MFA devices associated with an account.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_server_certs(path_prefix='/', marker=None, max_items=None)

	Lists the server certificates that have the specified path prefix.
If none exist, the action returns an empty list.

	Parameters:	
	path_prefix (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, only certificates whose paths match
the provided prefix will be returned.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_signing_certs(marker=None, max_items=None, user_name=None)

	Get all signing certificates associated with an account.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
get_all_user_policies(user_name, marker=None, max_items=None)

	List the names of the policies associated with the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user the policy is associated with.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_users(path_prefix='/', marker=None, max_items=None)

	List the users that have the specified path prefix.

	Parameters:	
	path_prefix (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, only users whose paths match
the provided prefix will be returned.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_group(group_name, marker=None, max_items=None)

	Return a list of users that are in the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group whose information should
be returned.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_group_policy(group_name, policy_name)

	Retrieves the specified policy document for the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to get.

	
get_groups_for_user(user_name, marker=None, max_items=None)

	List the groups that a specified user belongs to.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user to list groups for.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_login_profiles(user_name)

	Retrieves the login profile for the specified user.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
get_response(action, params, path='/', parent=None, verb='GET', list_marker='Set')

	Utility method to handle calls to IAM and parsing of responses.

	
get_server_certificate(cert_name)

	Retrieves information about the specified server certificate.

	Parameters:	cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the server certificate you want
to retrieve information about.

	
get_signin_url(service='ec2')

	Get the URL where IAM users can use their login profile to sign in
to this account’s console.

	Parameters:	service (string [https://docs.python.org/2/library/string.html#module-string]) – Default service to go to in the console.

	
get_user(user_name=None)

	Retrieve information about the specified user.

If the user_name is not specified, the user_name is determined
implicitly based on the AWS Access Key ID used to sign the request.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user to delete.
If not specified, defaults to user making
request.

	
get_user_policy(user_name, policy_name)

	Retrieves the specified policy document for the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to get.

	
put_group_policy(group_name, policy_name, policy_json)

	Adds or updates the specified policy document for the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to get.

	policy_json (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document.

	
put_user_policy(user_name, policy_name, policy_json)

	Adds or updates the specified policy document for the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to get.

	policy_json (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document.

	
remove_user_from_group(group_name, user_name)

	Remove a user from a group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The user to remove from the group.

	
resync_mfa_device(user_name, serial_number, auth_code_1, auth_code_2)

	Syncronizes the specified MFA device with the AWS servers.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	seriasl_number – The serial number which uniquely identifies
the MFA device.

	auth_code_1 (string [https://docs.python.org/2/library/string.html#module-string]) – An authentication code emitted by the device.

	auth_code_2 (string [https://docs.python.org/2/library/string.html#module-string]) – A subsequent authentication code emitted
by the device.

	
update_access_key(access_key_id, status, user_name=None)

	Changes the status of the specified access key from Active to Inactive
or vice versa. This action can be used to disable a user’s key as
part of a key rotation workflow.

If the user_name is not specified, the user_name is determined
implicitly based on the AWS Access Key ID used to sign the request.

	Parameters:	
	access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the access key.

	status (string [https://docs.python.org/2/library/string.html#module-string]) – Either Active or Inactive.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of user (optional).

	
update_group(group_name, new_group_name=None, new_path=None)

	Updates name and/or path of the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new group

	new_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the name of the group will be
changed to this name.

	new_path (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the path of the group will be
changed to this path.

	
update_login_profile(user_name, password)

	Resets the password associated with the user’s login profile.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user

	password (string [https://docs.python.org/2/library/string.html#module-string]) – The new password for the user

	
update_server_cert(cert_name, new_cert_name=None, new_path=None)

	Updates the name and/or the path of the specified server certificate.

	Parameters:	
	cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the server certificate that you want
to update.

	new_cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The new name for the server certificate.
Include this only if you are updating the
server certificate’s name.

	new_path (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the path of the certificate will be
changed to this path.

	
update_signing_cert(cert_id, status, user_name=None)

	Change the status of the specified signing certificate from
Active to Inactive or vice versa.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	cert_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the signing certificate

	status (string [https://docs.python.org/2/library/string.html#module-string]) – Either Active or Inactive.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
update_user(user_name, new_user_name=None, new_path=None)

	Updates name and/or path of the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user

	new_user_name (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the username of the user will be
changed to this username.

	new_path (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the path of the user will be
changed to this path.

	
upload_server_cert(cert_name, cert_body, private_key, cert_chain=None, path=None)

	Uploads a server certificate entity for the AWS Account.
The server certificate entity includes a public key certificate,
a private key, and an optional certificate chain, which should
all be PEM-encoded.

	Parameters:	
	cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name for the server certificate. Do not
include the path in this value.

	cert_body (string [https://docs.python.org/2/library/string.html#module-string]) – The contents of the public key certificate
in PEM-encoded format.

	private_key (string [https://docs.python.org/2/library/string.html#module-string]) – The contents of the private key in
PEM-encoded format.

	cert_chain (string [https://docs.python.org/2/library/string.html#module-string]) – The contents of the certificate chain. This
is typically a concatenation of the PEM-encoded
public key certificates of the chain.

	path (string [https://docs.python.org/2/library/string.html#module-string]) – The path for the server certificate.

	
upload_signing_cert(cert_body, user_name=None)

	Uploads an X.509 signing certificate and associates it with
the specified user.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	cert_body (string [https://docs.python.org/2/library/string.html#module-string]) – The body of the signing certificate.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

boto.iam.summarymap

	
class boto.iam.summarymap.SummaryMap(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

An Introduction to boto’s SQS interface

This tutorial focuses on the boto interface to the Simple Queue Service
from Amazon Web Services. This tutorial assumes that you have boto already
downloaded and installed.

Creating a Connection

The first step in accessing SQS is to create a connection to the service.
There are two ways to do this in boto. The first is:

>>> from boto.sqs.connection import SQSConnection
>>> conn = SQSConnection('<aws access key>', '<aws secret key>')

At this point the variable conn will point to an SQSConnection object. Bear in mind that
just as any other AWS service SQS is region-specfic. Also important to note is that by default,
if no region is provided, it’ll connect to the US-EAST-1 region. In
this example, the AWS access key and AWS secret key are passed in to the
method explicitely. Alternatively, you can set the environment variables:

AWS_ACCESS_KEY_ID - Your AWS Access Key ID
AWS_SECRET_ACCESS_KEY - Your AWS Secret Access Key

and then call the constructor without any arguments, like this:

>>> conn = SQSConnection()

There is also a shortcut function in the boto package, called connect_sqs
that may provide a slightly easier means of creating a connection:

>>> import boto
>>> conn = boto.connect_sqs()

In either case, conn will point to an SQSConnection object which we will
use throughout the remainder of this tutorial.

Creating a Queue

Once you have a connection established with SQS, you will probably want to
create a queue. In its simplest form, that can be accomplished as follows:

>>> q = conn.create_queue('myqueue')

The create_queue method will create (and return) the requested queue if it does not
exist or will return the existing queue if it does. There is an
optional parameter to create_queue called visibility_timeout. This basically
controls how long a message will remain invisible to other queue readers
once it has been read (see SQS documentation for more detailed explanation).
If this is not explicitly specified the queue will be created with whatever
default value SQS provides (currently 30 seconds). If you would like to
specify another value, you could do so like this:

>>> q = conn.create_queue('myqueue', 120)

This would establish a default visibility timeout for this queue of 120
seconds. As you will see later on, this default value for the queue can
also be overridden each time a message is read from the queue. If you want
to check what the default visibility timeout is for a queue:

>>> q.get_timeout()
30

Listing all Queues

To retrieve a list of the queues for your account in the current region:

>>> conn.get_all_queues()
[
 Queue(https://queue.amazonaws.com/411358162645/myqueue),
 Queue(https://queue.amazonaws.com/411358162645/another_queue),
 Queue(https://queue.amazonaws.com/411358162645/another_queue2)
]

This will leave you with a list of all of your boto.sqs.queue.Queue
instances. Alternatively, if you wanted to only list the queues that started
with 'another':

>>> conn.get_all_queues(prefix='another')
[
 Queue(https://queue.amazonaws.com/411358162645/another_queue),
 Queue(https://queue.amazonaws.com/411358162645/another_queue2)
]

Getting a Queue (by name)

If you wish to explicitly retrieve an existing queue and the name of the queue is known,
you can retrieve the queue as follows:

>>> my_queue = conn.get_queue('myqueue')
Queue(https://queue.amazonaws.com/411358162645/myqueue)

This leaves you with a single boto.sqs.queue.Queue, which abstracts
the SQS Queue named ‘myqueue’.

Writing Messages

Once you have a queue setup, presumably you will want to write some messages
to it. SQS doesn’t care what kind of information you store in your messages
or what format you use to store it. As long as the amount of data per
message is less than or equal to 256Kb, SQS won’t complain.

So, first we need to create a Message object:

>>> from boto.sqs.message import Message
>>> m = Message()
>>> m.set_body('This is my first message.')
>>> status = q.write(m)

The write method returns a True if everything went well. If the write
didn’t succeed it will either return a False (meaning SQS simply chose
not to write the message for some reason) or an exception if there was
some sort of problem with the request.

Writing Messages (Custom Format)

The technique above will work only if you use boto’s default Message payload format;
however, you may have a lot of specific requirements around the format of
the message data. For example, you may want to store one big string or you might
want to store something that looks more like RFC822 messages or you might want
to store a binary payload such as pickled Python objects.

The way boto deals with this issue is to define a simple Message object that
treats the message data as one big string which you can set and get. If that
Message object meets your needs, you’re good to go. However, if you need to
incorporate different behavior in your message or handle different types of
data you can create your own Message class. You just need to register that
class with the boto queue object so that it knows that, when you read a message from the
queue, it should create one of your message objects rather than the
default boto Message object. To register your message class, you would:

>>> import MyMessage
>>> q.set_message_class(MyMessage)
>>> m = MyMessage()
>>> m.set_body('This is my first message.')
>>> status = q.write(m)

where MyMessage is the class definition for your message class. Your
message class should subclass the boto Message because there is a small
bit of Python magic happening in the __setattr__ method of the boto Message
class.

Reading Messages

So, now we have a message in our queue. How would we go about reading it?
Here’s one way:

>>> rs = q.get_messages()
>>> len(rs)
1
>>> m = rs[0]
>>> m.get_body()
u'This is my first message'

The get_messages method also returns a ResultSet object as described
above. In addition to the special attributes that we already talked
about the ResultSet object also contains any results returned by the
request. To get at the results you can treat the ResultSet as a
sequence object (e.g. a list). We can check the length (how many results)
and access particular items within the list using the slice notation
familiar to Python programmers.

At this point, we have read the message from the queue and SQS will make
sure that this message remains invisible to other readers of the queue
until the visibility timeout period for the queue expires. If you delete
the message before the timeout period expires then no one else will ever see
the message again. However, if you don’t delete it (maybe because your reader crashed
or failed in some way, for example) it will magically reappear in my queue
for someone else to read. If you aren’t happy with the default visibility
timeout defined for the queue, you can override it when you read a message:

>>> q.get_messages(visibility_timeout=60)

This means that regardless of what the default visibility timeout is for
the queue, this message will remain invisible to other readers for 60
seconds.

The get_messages method can also return more than a single message. By
passing a num_messages parameter (defaults to 1) you can control the maximum
number of messages that will be returned by the method. To show this
feature off, first let’s load up a few more messages.

>>> for i in range(1, 11):
... m = Message()
... m.set_body('This is message %d' % i)
... q.write(m)
...
>>> rs = q.get_messages(10)
>>> len(rs)
10

Don’t be alarmed if the length of the result set returned by the get_messages
call is less than 10. Sometimes it takes some time for new messages to become
visible in the queue. Give it a minute or two and they will all show up.

If you want a slightly simpler way to read messages from a queue, you
can use the read method. It will either return the message read or
it will return None if no messages were available. You can also pass
a visibility_timeout parameter to read, if you desire:

>>> m = q.read(60)
>>> m.get_body()
u'This is my first message'

Deleting Messages and Queues

As stated above, messages are never deleted by the queue unless explicitly told to do so.
To remove a message from a queue:

>>> q.delete_message(m)
[]

If I want to delete the entire queue, I would use:

>>> conn.delete_queue(q)

However, and this is a good safe guard, this won’t succeed unless the queue is empty.

Additional Information

The above tutorial covers the basic operations of creating queues, writing messages,
reading messages, deleting messages, and deleting queues. There are a
few utility methods in boto that might be useful as well. For example,
to count the number of messages in a queue:

>>> q.count()
10

This can be handy but is command as well as the other two utility methods
I’ll describe in a minute are inefficient and should be used with caution
on queues with lots of messages (e.g. many hundreds or more). Similarly,
you can clear (delete) all messages in a queue with:

>>> q.clear()

Be REAL careful with that one! Finally, if you want to dump all of the
messages in a queue to a local file:

>>> q.dump('messages.txt', sep='\n------------------\n')

This will read all of the messages in the queue and write the bodies of
each of the messages to the file messages.txt. The option sep argument
is a separator that will be printed between each message body in the file.

SQS

boto.sqs

	
boto.sqs.connect_to_region(region_name, **kw_params)

	

	
boto.sqs.regions()

	Get all available regions for the SQS service.

	Return type:	list

	Returns:	A list of boto.ec2.regioninfo.RegionInfo

boto.sqs.attributes

Represents an SQS Attribute Name/Value set

	
class boto.sqs.attributes.Attributes(parent)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.sqs.connection

	
class boto.sqs.connection.SQSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', security_token=None)

	A Connection to the SQS Service.

	
APIVersion = '2011-10-01'

	

	
DefaultContentType = 'text/plain'

	

	
DefaultRegionEndpoint = 'sqs.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of SQSError

	
add_permission(queue, label, aws_account_id, action_name)

	Add a permission to a queue.

	Parameters:	
	queue (boto.sqs.queue.Queue) – The queue object

	label (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – A unique identification of the permission you are setting.
Maximum of 80 characters [0-9a-zA-Z_-]
Example, AliceSendMessage

	principal_id – The AWS account number of the principal who will
be given permission. The principal must have
an AWS account, but does not need to be signed
up for Amazon SQS. For information
about locating the AWS account identification.

	action_name (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The action. Valid choices are:
*|SendMessage|ReceiveMessage|DeleteMessage|
ChangeMessageVisibility|GetQueueAttributes

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
change_message_visibility(queue, receipt_handle, visibility_timeout)

	Extends the read lock timeout for the specified message from
the specified queue to the specified value.

	Parameters:	
	queue (A boto.sqs.queue.Queue object) – The Queue from which messages are read.

	queue – The receipt handle associated with the message whose
visibility timeout will be changed.

	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The new value of the message’s visibility
timeout in seconds.

	
create_queue(queue_name, visibility_timeout=None)

	Create an SQS Queue.

	Parameters:	
	queue_name (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The name of the new queue. Names are scoped to
an account and need to be unique within that
account. Calling this method on an existing
queue name will not return an error from SQS
unless the value for visibility_timeout is
different than the value of the existing queue
of that name. This is still an expensive operation,
though, and not the preferred way to check for
the existence of a queue. See the
boto.sqs.connection.SQSConnection.lookup() method.

	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The default visibility timeout for all
messages written in the queue. This can
be overridden on a per-message.

	Return type:	boto.sqs.queue.Queue

	Returns:	The newly created queue.

	
delete_message(queue, message)

	Delete a message from a queue.

	Parameters:	
	queue (A boto.sqs.queue.Queue object) – The Queue from which messages are read.

	message (A boto.sqs.message.Message object) – The Message to be deleted

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
delete_message_from_handle(queue, receipt_handle)

	Delete a message from a queue, given a receipt handle.

	Parameters:	
	queue (A boto.sqs.queue.Queue object) – The Queue from which messages are read.

	receipt_handle (str [https://docs.python.org/2/library/functions.html#str]) – The receipt handle for the message

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
delete_queue(queue, force_deletion=False)

	Delete an SQS Queue.

	Parameters:	
	queue (A Queue object) – The SQS queue to be deleted

	force_deletion (Boolean) – Normally, SQS will not delete a queue that
contains messages. However, if the
force_deletion argument is True, the
queue will be deleted regardless of whether
there are messages in the queue or not.
USE WITH CAUTION. This will delete all
messages in the queue as well.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if the command succeeded, False otherwise

	
get_all_queues(prefix='')

	Retrieves all queues.

	Parameters:	prefix (str [https://docs.python.org/2/library/functions.html#str]) – Optionally, only return queues that start with
this value.

	Return type:	list

	Returns:	A list of boto.sqs.queue.Queue instances.

	
get_queue(queue_name)

	Retrieves the queue with the given name, or None if no match
was found.

	Parameters:	queue_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the queue to retrieve.

	Return type:	boto.sqs.queue.Queue or None

	Returns:	The requested queue, or None if no match was found.

	
get_queue_attributes(queue, attribute='All')

	Gets one or all attributes of a Queue

	Parameters:	queue (A Queue object) – The SQS queue to be deleted

	Return type:	boto.sqs.attributes.Attributes

	Returns:	An Attributes object containing request value(s).

	
lookup(queue_name)

	Retrieves the queue with the given name, or None if no match
was found.

	Parameters:	queue_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the queue to retrieve.

	Return type:	boto.sqs.queue.Queue or None

	Returns:	The requested queue, or None if no match was found.

	
receive_message(queue, number_messages=1, visibility_timeout=None, attributes=None)

	Read messages from an SQS Queue.

	Parameters:	
	queue (A Queue object) – The Queue from which messages are read.

	number_messages (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of messages to read
(default=1)

	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The number of seconds the message should
remain invisible to other queue readers
(default=None which uses the Queues default)

	attributes (str [https://docs.python.org/2/library/functions.html#str]) – The name of additional attribute to return
with response or All if you want all attributes.
The default is to return no additional attributes.
Valid values:

All|SenderId|SentTimestamp|
ApproximateReceiveCount|
ApproximateFirstReceiveTimestamp

	Return type:	list

	Returns:	A list of boto.sqs.message.Message objects.

	
remove_permission(queue, label)

	Remove a permission from a queue.

	Parameters:	
	queue (boto.sqs.queue.Queue) – The queue object

	label (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The unique label associated with the permission
being removed.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
send_message(queue, message_content, delay_seconds=None)

	

	
send_message_batch(queue, messages)

	Delivers up to 10 messages to a queue in a single request.

	Parameters:	
	queue (A boto.sqs.queue.Queue object.) – The Queue to which the messages will be written.

	messages (List of lists.) – A list of lists or tuples. Each inner
tuple represents a single message to be written
and consists of and ID (string) that must be unique
within the list of messages, the message body itself
which can be a maximum of 64K in length, and an
integer which represents the delay time (in seconds)
for the message (0-900) before the message will
be delivered to the queue.

	
set_queue_attribute(queue, attribute, value)

	

boto.sqs.jsonmessage

	
class boto.sqs.jsonmessage.JSONMessage(queue=None, body=None, xml_attrs=None)

	Acts like a dictionary but encodes it’s data as a Base64 encoded JSON payload.

	
decode(value)

	

	
encode(value)

	

boto.sqs.message

SQS Message

A Message represents the data stored in an SQS queue. The rules for what is allowed within an SQS
Message are here:

http://docs.amazonwebservices.com/AWSSimpleQueueService/2008-01-01/SQSDeveloperGuide/Query_QuerySendMessage.html

So, at it’s simplest level a Message just needs to allow a developer to store bytes in it and get the bytes
back out. However, to allow messages to have richer semantics, the Message class must support the
following interfaces:

The constructor for the Message class must accept a keyword parameter “queue” which is an instance of a
boto Queue object and represents the queue that the message will be stored in. The default value for
this parameter is None.

The constructor for the Message class must accept a keyword parameter “body” which represents the
content or body of the message. The format of this parameter will depend on the behavior of the
particular Message subclass. For example, if the Message subclass provides dictionary-like behavior to the
user the body passed to the constructor should be a dict-like object that can be used to populate
the initial state of the message.

The Message class must provide an encode method that accepts a value of the same type as the body
parameter of the constructor and returns a string of characters that are able to be stored in an
SQS message body (see rules above).

The Message class must provide a decode method that accepts a string of characters that can be
stored (and probably were stored!) in an SQS message and return an object of a type that is consistent
with the “body” parameter accepted on the class constructor.

The Message class must provide a __len__ method that will return the size of the encoded message
that would be stored in SQS based on the current state of the Message object.

The Message class must provide a get_body method that will return the body of the message in the
same format accepted in the constructor of the class.

The Message class must provide a set_body method that accepts a message body in the same format
accepted by the constructor of the class. This method should alter to the internal state of the
Message object to reflect the state represented in the message body parameter.

The Message class must provide a get_body_encoded method that returns the current body of the message
in the format in which it would be stored in SQS.

	
class boto.sqs.message.EncodedMHMessage(queue=None, body=None, xml_attrs=None)

	The EncodedMHMessage class provides a message that provides RFC821-like
headers like this:

HeaderName: HeaderValue

This variation encodes/decodes the body of the message in base64 automatically.
The message instance can be treated like a mapping object,
i.e. m[‘HeaderName’] would return ‘HeaderValue’.

	
decode(value)

	

	
encode(value)

	

	
class boto.sqs.message.MHMessage(queue=None, body=None, xml_attrs=None)

	The MHMessage class provides a message that provides RFC821-like
headers like this:

HeaderName: HeaderValue

The encoding/decoding of this is handled automatically and after
the message body has been read, the message instance can be treated
like a mapping object, i.e. m[‘HeaderName’] would return ‘HeaderValue’.

	
decode(value)

	

	
encode(value)

	

	
get(key, default=None)

	

	
has_key(key)

	

	
items()

	

	
keys()

	

	
update(d)

	

	
values()

	

	
class boto.sqs.message.Message(queue=None, body='')

	The default Message class used for SQS queues. This class automatically
encodes/decodes the message body using Base64 encoding to avoid any
illegal characters in the message body. See:

http://developer.amazonwebservices.com/connect/thread.jspa?messageID=49680%EC%88%90

for details on why this is a good idea. The encode/decode is meant to
be transparent to the end-user.

	
decode(value)

	

	
encode(value)

	

	
class boto.sqs.message.RawMessage(queue=None, body='')

	Base class for SQS messages. RawMessage does not encode the message
in any way. Whatever you store in the body of the message is what
will be written to SQS and whatever is returned from SQS is stored
directly into the body of the message.

	
change_visibility(visibility_timeout)

	

	
decode(value)

	Transform seralized byte array into any object.

	
delete()

	

	
encode(value)

	Transform body object into serialized byte array format.

	
endElement(name, value, connection)

	

	
get_body()

	

	
get_body_encoded()

	This method is really a semi-private method used by the Queue.write
method when writing the contents of the message to SQS.
You probably shouldn’t need to call this method in the normal course of events.

	
set_body(body)

	Override the current body for this object, using decoded format.

	
startElement(name, attrs, connection)

	

boto.sqs.queue

Represents an SQS Queue

	
class boto.sqs.queue.Queue(connection=None, url=None, message_class=<class boto.sqs.message.Message>)

	
	
add_permission(label, aws_account_id, action_name)

	Add a permission to a queue.

	Parameters:	
	label (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – A unique identification of the permission you are setting.
Maximum of 80 characters [0-9a-zA-Z_-]
Example, AliceSendMessage

	principal_id – The AWS account number of the principal who will be given
permission. The principal must have an AWS account, but
does not need to be signed up for Amazon SQS. For information
about locating the AWS account identification.

	action_name (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The action. Valid choices are:
*|SendMessage|ReceiveMessage|DeleteMessage|
ChangeMessageVisibility|GetQueueAttributes

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
clear(page_size=10, vtimeout=10)

	Utility function to remove all messages from a queue

	
count(page_size=10, vtimeout=10)

	Utility function to count the number of messages in a queue.
Note: This function now calls GetQueueAttributes to obtain
an ‘approximate’ count of the number of messages in a queue.

	
count_slow(page_size=10, vtimeout=10)

	Deprecated. This is the old ‘count’ method that actually counts
the messages by reading them all. This gives an accurate count but
is very slow for queues with non-trivial number of messasges.
Instead, use get_attribute(‘ApproximateNumberOfMessages’) to take
advantage of the new SQS capability. This is retained only for
the unit tests.

	
delete()

	Delete the queue.

	
delete_message(message)

	Delete a message from the queue.

	Parameters:	message (boto.sqs.message.Message) – The boto.sqs.message.Message object to delete.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise

	
dump(file_name, page_size=10, vtimeout=10, sep='\n')

	Utility function to dump the messages in a queue to a file
NOTE: Page size must be < 10 else SQS errors

	
endElement(name, value, connection)

	

	
get_attributes(attributes='All')

	Retrieves attributes about this queue object and returns
them in an Attribute instance (subclass of a Dictionary).

	Parameters:	attributes (string [https://docs.python.org/2/library/string.html#module-string]) – String containing one of:
ApproximateNumberOfMessages,
ApproximateNumberOfMessagesNotVisible,
VisibilityTimeout,
CreatedTimestamp,
LastModifiedTimestamp,
Policy

	Return type:	Attribute object

	Returns:	An Attribute object which is a mapping type holding the
requested name/value pairs

	
get_messages(num_messages=1, visibility_timeout=None, attributes=None)

	Get a variable number of messages.

	Parameters:	
	num_messages (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of messages to read from the queue.

	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The VisibilityTimeout for the messages read.

	attributes (str [https://docs.python.org/2/library/functions.html#str]) – The name of additional attribute to return with response
or All if you want all attributes. The default is to
return no additional attributes. Valid values:
All
SenderId
SentTimestamp
ApproximateReceiveCount
ApproximateFirstReceiveTimestamp

	Return type:	list

	Returns:	A list of boto.sqs.message.Message objects.

	
get_timeout()

	Get the visibility timeout for the queue.

	Return type:	int [https://docs.python.org/2/library/functions.html#int]

	Returns:	The number of seconds as an integer.

	
id

	

	
load(file_name, sep='\n')

	Utility function to load messages from a local filename to a queue

	
load_from_file(fp, sep='\n')

	Utility function to load messages from a file-like object to a queue

	
load_from_filename(file_name, sep='\n')

	Utility function to load messages from a local filename to a queue

	
load_from_s3(bucket, prefix=None)

	Load messages previously saved to S3.

	
name

	

	
new_message(body='')

	Create new message of appropriate class.

	Parameters:	body (message body) – The body of the newly created message (optional).

	Return type:	boto.sqs.message.Message

	Returns:	A new Message object

	
read(visibility_timeout=None)

	Read a single message from the queue.

	Parameters:	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The timeout for this message in seconds

	Return type:	boto.sqs.message.Message

	Returns:	A single message or None if queue is empty

	
remove_permission(label)

	Remove a permission from a queue.

	Parameters:	label (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The unique label associated with the permission being removed.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
save(file_name, sep='\n')

	Read all messages from the queue and persist them to local file.
Messages are written to the file and the ‘sep’ string is written
in between messages. Messages are deleted from the queue after
being written to the file.
Returns the number of messages saved.

	
save_to_file(fp, sep='\n')

	Read all messages from the queue and persist them to file-like object.
Messages are written to the file and the ‘sep’ string is written
in between messages. Messages are deleted from the queue after
being written to the file.
Returns the number of messages saved.

	
save_to_filename(file_name, sep='\n')

	Read all messages from the queue and persist them to local file.
Messages are written to the file and the ‘sep’ string is written
in between messages. Messages are deleted from the queue after
being written to the file.
Returns the number of messages saved.

	
save_to_s3(bucket)

	Read all messages from the queue and persist them to S3.
Messages are stored in the S3 bucket using a naming scheme of:

<queue_id>/<message_id>

Messages are deleted from the queue after being saved to S3.
Returns the number of messages saved.

	
set_attribute(attribute, value)

	Set a new value for an attribute of the Queue.

	Parameters:	
	attribute (String) – The name of the attribute you want to set. The
only valid value at this time is: VisibilityTimeout

	value (int [https://docs.python.org/2/library/functions.html#int]) – The new value for the attribute.
For VisibilityTimeout the value must be an
integer number of seconds from 0 to 86400.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, otherwise False.

	
set_message_class(message_class)

	Set the message class that should be used when instantiating messages read
from the queue. By default, the class boto.sqs.message.Message is used but
this can be overriden with any class that behaves like a message.

	Parameters:	message_class (Message-like class) – The new Message class

	
set_timeout(visibility_timeout)

	Set the visibility timeout for the queue.

	Parameters:	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The desired timeout in seconds

	
startElement(name, attrs, connection)

	

	
write(message, delay_seconds=None)

	Add a single message to the queue.

	Parameters:	message (Message) – The message to be written to the queue

	Return type:	boto.sqs.message.Message

	Returns:	The boto.sqs.message.Message object that was written.

boto.sqs.regioninfo

	
class boto.sqs.regioninfo.SQSRegionInfo(connection=None, name=None, endpoint=None)

	

boto.sqs.batchresults

A set of results returned by SendMessageBatch.

	
class boto.sqs.batchresults.BatchResults(parent)

	A container for the results of a send_message_batch request.

	Variables:	
	results – A list of successful results. Each item in the
list will be an instance of ResultEntry.

	errors – A list of unsuccessful results. Each item in the
list will be an instance of ResultEntry.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.sqs.batchresults.ResultEntry

	The result (successful or unsuccessful) of a single
message within a send_message_batch request.

In the case of a successful result, this dict-like
object will contain the following items:

	Variables:	
	id – A string containing the user-supplied ID of the message.

	message_id – A string containing the SQS ID of the new message.

	message_md5 – A string containing the MD5 hash of the message body.

In the case of an error, this object will contain the following
items:

	Variables:	
	id – A string containing the user-supplied ID of the message.

	sender_fault – A boolean value.

	error_code – A string containing a short description of the error.

	error_message – A string containing a description of the error.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

SNS

boto.sns

	
boto.sns.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.sns.connection.SNSConnection.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.sns.connection.SNSConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.sns.get_region(region_name, **kw_params)

	Find and return a boto.regioninfo.RegionInfo object
given a region name.

	Type:	str

	Param:	The name of the region.

	Return type:	boto.regioninfo.RegionInfo

	Returns:	The RegionInfo object for the given region or None if
an invalid region name is provided.

	
boto.sns.regions()

	Get all available regions for the SNS service.

	Return type:	list

	Returns:	A list of boto.regioninfo.RegionInfo instances

	
class boto.sns.SNSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', security_token=None)

	
	
APIVersion = '2010-03-31'

	

	
DefaultRegionEndpoint = 'sns.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
add_permission(topic, label, account_ids, actions)

	Adds a statement to a topic’s access control policy, granting
access for the specified AWS accounts to the specified actions.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic.

	label (string [https://docs.python.org/2/library/string.html#module-string]) – A unique identifier for the new policy statement.

	account_ids (list of strings) – The AWS account ids of the users who will be
give access to the specified actions.

	actions (list of strings) – The actions you want to allow for each of the
specified principal(s).

	
confirm_subscription(topic, token, authenticate_on_unsubscribe=False)

	Get properties of a Topic

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the new topic.

	token (string [https://docs.python.org/2/library/string.html#module-string]) – Short-lived token sent to and endpoint during
the Subscribe operation.

	authenticate_on_unsubscribe (bool [https://docs.python.org/2/library/functions.html#bool]) – Optional parameter indicating
that you wish to disable
unauthenticated unsubscription
of the subscription.

	
create_topic(topic)

	Create a new Topic.

	Parameters:	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new topic.

	
delete_topic(topic)

	Delete an existing topic

	Parameters:	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic

	
get_all_subscriptions(next_token=None)

	Get list of all subscriptions.

	Parameters:	next_token (string [https://docs.python.org/2/library/string.html#module-string]) – Token returned by the previous call to
this method.

	
get_all_subscriptions_by_topic(topic, next_token=None)

	Get list of all subscriptions to a specific topic.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic for which you wish to
find subscriptions.

	next_token (string [https://docs.python.org/2/library/string.html#module-string]) – Token returned by the previous call to
this method.

	
get_all_topics(next_token=None)

	

	Parameters:	next_token (string [https://docs.python.org/2/library/string.html#module-string]) – Token returned by the previous call to
this method.

	
get_topic_attributes(topic)

	Get attributes of a Topic

	Parameters:	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic.

	
publish(topic, message, subject=None)

	Get properties of a Topic

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the new topic.

	message (string [https://docs.python.org/2/library/string.html#module-string]) – The message you want to send to the topic.
Messages must be UTF-8 encoded strings and
be at most 4KB in size.

	subject (string [https://docs.python.org/2/library/string.html#module-string]) – Optional parameter to be used as the “Subject”
line of the email notifications.

	
remove_permission(topic, label)

	Removes a statement from a topic’s access control policy.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic.

	label (string [https://docs.python.org/2/library/string.html#module-string]) – A unique identifier for the policy statement
to be removed.

	
set_topic_attributes(topic, attr_name, attr_value)

	Get attributes of a Topic

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic.

	attr_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the attribute you want to set.
Only a subset of the topic’s attributes are mutable.
Valid values: Policy | DisplayName

	attr_value (string [https://docs.python.org/2/library/string.html#module-string]) – The new value for the attribute.

	
subscribe(topic, protocol, endpoint)

	Subscribe to a Topic.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new topic.

	protocol (string [https://docs.python.org/2/library/string.html#module-string]) – The protocol used to communicate with
the subscriber. Current choices are:
email|email-json|http|https|sqs

	endpoint (string [https://docs.python.org/2/library/string.html#module-string]) – The location of the endpoint for
the subscriber.
* For email, this would be a valid email address
* For email-json, this would be a valid email address
* For http, this would be a URL beginning with http
* For https, this would be a URL beginning with https
* For sqs, this would be the ARN of an SQS Queue

	
subscribe_sqs_queue(topic, queue)

	Subscribe an SQS queue to a topic.

This is convenience method that handles most of the complexity involved
in using ans SQS queue as an endpoint for an SNS topic. To achieve this
the following operations are performed:

	The correct ARN is constructed for the SQS queue and that ARN is
then subscribed to the topic.

	A JSON policy document is contructed that grants permission to
the SNS topic to send messages to the SQS queue.

	This JSON policy is then associated with the SQS queue using
the queue’s set_attribute method. If the queue already has
a policy associated with it, this process will add a Statement to
that policy. If no policy exists, a new policy will be created.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new topic.

	queue (A boto Queue object) – The queue you wish to subscribe to the SNS Topic.

	
unsubscribe(subscription)

	Allows endpoint owner to delete subscription.
Confirmation message will be delivered.

	Parameters:	subscription (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the subscription to be deleted.

Simple Email Service Tutorial

This tutorial focuses on the boto interface to AWS’ Simple Email Service (SES).
This tutorial assumes that you have boto already downloaded and installed.

Creating a Connection

The first step in accessing SES is to create a connection to the service.
To do so, the most straight forward way is the following:

>>> import boto
>>> conn = boto.connect_ses(
 aws_access_key_id='<YOUR_AWS_KEY_ID>',
 aws_secret_access_key='<YOUR_AWS_SECRET_KEY>')
>>> conn
SESConnection:email.us-east-1.amazonaws.com

Bear in mind that if you have your credentials in boto config in your home
directory, the two keyword arguments in the call above are not needed. More
details on configuration can be fond in Boto Config.

The boto.connect_ses() functions returns a
boto.ses.connection.SESConnection instance, which is a the boto API
for working with SES.

Notes on Sending

It is important to keep in mind that while emails appear to come “from” the
address that you specify via Reply-To, the sending is done through Amazon.
Some clients do pick up on this disparity, and leave a note on emails.

Verifying a Sender Email Address

Before you can send email “from” an address, you must prove that you have
access to the account. When you send a validation request, an email is sent
to the address with a link in it. Clicking on the link validates the address
and adds it to your SES account. Here’s how to send the validation email:

>>> conn.verify_email_address('some@address.com')
{
 'VerifyEmailAddressResponse': {
 'ResponseMetadata': {
 'RequestId': '4a974fd5-56c2-11e1-ad4c-c1f08c91d554'
 }
 }
}

After a short amount of time, you’ll find an email with the validation
link inside. Click it, and this address may be used to send emails.

Listing Verified Addresses

If you’d like to list the addresses that are currently verified on your
SES account, use
list_verified_email_addresses:

>>> conn.list_verified_email_addresses()
{
 'ListVerifiedEmailAddressesResponse': {
 'ListVerifiedEmailAddressesResult': {
 'VerifiedEmailAddresses': [
 'some@address.com',
 'another@address.com'
]
 },
 'ResponseMetadata': {
 'RequestId': '2ab45c18-56c3-11e1-be66-ffd2a4549d70'
 }
 }
}

Deleting a Verified Address

In the event that you’d like to remove an email address from your account,
use
delete_verified_email_address:

>>> conn.delete_verified_email_address('another@address.com')

Sending an Email

Sending an email is done via
send_email:

>>> conn.send_email(
 'some@address.com',
 'Your subject',
 'Body here',
 ['recipient-address-1@gmail.com'])
{
 'SendEmailResponse': {
 'ResponseMetadata': {
 'RequestId': '4743c2b7-56c3-11e1-bccd-c99bd68002fd'
 },
 'SendEmailResult': {
 'MessageId': '000001357a177192-7b894025-147a-4705-8455-7c880b0c8270-000000'
 }
 }
}

If you’re wanting to send a multipart MIME email, see the reference for
send_raw_email,
which is a bit more of a low-level alternative.

Checking your Send Quota

Staying within your quota is critical, since the upper limit is a hard cap.
Once you have hit your quota, no further email may be sent until enough
time elapses to where your 24 hour email count (rolling continuously) is
within acceptable ranges. Use
get_send_quota:

>>> conn.get_send_quota()
{
 'GetSendQuotaResponse': {
 'GetSendQuotaResult': {
 'Max24HourSend': '100000.0',
 'SentLast24Hours': '181.0',
 'MaxSendRate': '28.0'
 },
 'ResponseMetadata': {
 'RequestId': u'8a629245-56c4-11e1-9c53-9d5f4d2cc8d3'
 }
 }
}

Checking your Send Statistics

In order to fight spammers and ensure quality mail is being sent from SES,
Amazon tracks bounces, rejections, and complaints. This is done via
get_send_statistics.
Please be warned that the output is extremely verbose, to the point
where we’ll just show a short excerpt here:

>>> conn.get_send_statistics()
{
 'GetSendStatisticsResponse': {
 'GetSendStatisticsResult': {
 'SendDataPoints': [
 {
 'Complaints': '0',
 'Timestamp': '2012-02-13T05:02:00Z',
 'DeliveryAttempts': '8',
 'Bounces': '0',
 'Rejects': '0'
 },
 {
 'Complaints': '0',
 'Timestamp': '2012-02-13T05:17:00Z',
 'DeliveryAttempts': '12',
 'Bounces': '0',
 'Rejects': '0'
 }
]
 }
 }
}

SES

boto.ses

	
boto.ses.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.sns.connection.SESConnection.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.sns.connection.SESConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.ses.get_region(region_name, **kw_params)

	Find and return a boto.regioninfo.RegionInfo object
given a region name.

	Type:	str

	Param:	The name of the region.

	Return type:	boto.regioninfo.RegionInfo

	Returns:	The RegionInfo object for the given region or None if
an invalid region name is provided.

	
boto.ses.regions()

	Get all available regions for the SES service.

	Return type:	list

	Returns:	A list of boto.regioninfo.RegionInfo instances

boto.ses.connection

	
class boto.ses.connection.SESConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/')

	
	
APIVersion = '2010-12-01'

	

	
DefaultRegionEndpoint = 'email.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of BotoServerError

	
delete_verified_email_address(email_address)

	Deletes the specified email address from the list of verified
addresses.

	Parameters:	email_address – The email address to be removed from the list of
verified addreses.

	Return type:	dict

	Returns:	A DeleteVerifiedEmailAddressResponse structure. Note that
keys must be unicode strings.

	
get_send_quota()

	Fetches the user’s current activity limits.

	Return type:	dict

	Returns:	A GetSendQuotaResponse structure. Note that keys must be
unicode strings.

	
get_send_statistics()

	Fetches the user’s sending statistics. The result is a list of data
points, representing the last two weeks of sending activity.

Each data point in the list contains statistics for a 15-minute
interval.

	Return type:	dict

	Returns:	A GetSendStatisticsResponse structure. Note that keys must be
unicode strings.

	
list_verified_email_addresses()

	Fetch a list of the email addresses that have been verified.

	Return type:	dict

	Returns:	A ListVerifiedEmailAddressesResponse structure. Note that
keys must be unicode strings.

	
send_email(source, subject, body, to_addresses, cc_addresses=None, bcc_addresses=None, format='text', reply_addresses=None, return_path=None, text_body=None, html_body=None)

	Composes an email message based on input data, and then immediately
queues the message for sending.

	Parameters:	
	source (string [https://docs.python.org/2/library/string.html#module-string]) – The sender’s email address.

	subject (string [https://docs.python.org/2/library/string.html#module-string]) – The subject of the message: A short summary of the
content, which will appear in the recipient’s inbox.

	body (string [https://docs.python.org/2/library/string.html#module-string]) – The message body.

	to_addresses (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – The To: field(s) of the message.

	cc_addresses (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – The CC: field(s) of the message.

	bcc_addresses (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – The BCC: field(s) of the message.

	format (string [https://docs.python.org/2/library/string.html#module-string]) – The format of the message’s body, must be either “text”
or “html”.

	reply_addresses (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – The reply-to email address(es) for the
message. If the recipient replies to the
message, each reply-to address will
receive the reply.

	return_path (string [https://docs.python.org/2/library/string.html#module-string]) – The email address to which bounce notifications are
to be forwarded. If the message cannot be delivered
to the recipient, then an error message will be
returned from the recipient’s ISP; this message will
then be forwarded to the email address specified by
the ReturnPath parameter.

	text_body (string [https://docs.python.org/2/library/string.html#module-string]) – The text body to send with this email.

	html_body (string [https://docs.python.org/2/library/string.html#module-string]) – The html body to send with this email.

	
send_raw_email(raw_message, source=None, destinations=None)

	Sends an email message, with header and content specified by the
client. The SendRawEmail action is useful for sending multipart MIME
emails, with attachments or inline content. The raw text of the message
must comply with Internet email standards; otherwise, the message
cannot be sent.

	Parameters:	
	source (string [https://docs.python.org/2/library/string.html#module-string]) – The sender’s email address. Amazon’s docs say:

If you specify the Source parameter, then bounce notifications and
complaints will be sent to this email address. This takes precedence
over any Return-Path header that you might include in the raw text of
the message.

	raw_message (string [https://docs.python.org/2/library/string.html#module-string]) – The raw text of the message. The client is
responsible for ensuring the following:

	Message must contain a header and a body, separated by a blank line.

	All required header fields must be present.

	Each part of a multipart MIME message must be formatted properly.

	MIME content types must be among those supported by Amazon SES.
Refer to the Amazon SES Developer Guide for more details.

	Content must be base64-encoded, if MIME requires it.

	destinations (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – A list of destinations for the message.

	
verify_email_address(email_address)

	Verifies an email address. This action causes a confirmation email
message to be sent to the specified address.

	Parameters:	email_address – The email address to be verified.

	Return type:	dict

	Returns:	A VerifyEmailAddressResponse structure. Note that keys must
be unicode strings.

CloudWatch

First, make sure you have something to monitor. You can either create a
LoadBalancer or enable monitoring on an existing EC2 instance. To enable
monitoring, you can either call the monitor_instance method on the
EC2Connection object or call the monitor method on the Instance object.

It takes a while for the monitoring data to start accumulating but once
it does, you can do this:

>>> import boto
>>> c = boto.connect_cloudwatch()
>>> metrics = c.list_metrics()
>>> metrics
[Metric:NetworkIn,
 Metric:NetworkOut,
 Metric:NetworkOut(InstanceType,m1.small),
 Metric:NetworkIn(InstanceId,i-e573e68c),
 Metric:CPUUtilization(InstanceId,i-e573e68c),
 Metric:DiskWriteBytes(InstanceType,m1.small),
 Metric:DiskWriteBytes(ImageId,ami-a1ffb63),
 Metric:NetworkOut(ImageId,ami-a1ffb63),
 Metric:DiskWriteOps(InstanceType,m1.small),
 Metric:DiskReadBytes(InstanceType,m1.small),
 Metric:DiskReadOps(ImageId,ami-a1ffb63),
 Metric:CPUUtilization(InstanceType,m1.small),
 Metric:NetworkIn(ImageId,ami-a1ffb63),
 Metric:DiskReadOps(InstanceType,m1.small),
 Metric:DiskReadBytes,
 Metric:CPUUtilization,
 Metric:DiskWriteBytes(InstanceId,i-e573e68c),
 Metric:DiskWriteOps(InstanceId,i-e573e68c),
 Metric:DiskWriteOps,
 Metric:DiskReadOps,
 Metric:CPUUtilization(ImageId,ami-a1ffb63),
 Metric:DiskReadOps(InstanceId,i-e573e68c),
 Metric:NetworkOut(InstanceId,i-e573e68c),
 Metric:DiskReadBytes(ImageId,ami-a1ffb63),
 Metric:DiskReadBytes(InstanceId,i-e573e68c),
 Metric:DiskWriteBytes,
 Metric:NetworkIn(InstanceType,m1.small),
 Metric:DiskWriteOps(ImageId,ami-a1ffb63)]

The list_metrics call will return a list of all of the available metrics
that you can query against. Each entry in the list is a Metric object.
As you can see from the list above, some of the metrics are generic metrics
and some have Dimensions associated with them (e.g. InstanceType=m1.small).
The Dimension can be used to refine your query. So, for example, I could
query the metric Metric:CPUUtilization which would create the desired statistic
by aggregating cpu utilization data across all sources of information available
or I could refine that by querying the metric
Metric:CPUUtilization(InstanceId,i-e573e68c) which would use only the data
associated with the instance identified by the instance ID i-e573e68c.

Because for this example, I’m only monitoring a single instance, the set
of metrics available to me are fairly limited. If I was monitoring many
instances, using many different instance types and AMI’s and also several
load balancers, the list of available metrics would grow considerably.

Once you have the list of available metrics, you can actually
query the CloudWatch system for that metric. Let’s choose the CPU utilization
metric for our instance.:

>>> m = metrics[5]
>>> m
Metric:CPUUtilization(InstanceId,i-e573e68c)

The Metric object has a query method that lets us actually perform
the query against the collected data in CloudWatch. To call that,
we need a start time and end time to control the time span of data
that we are interested in. For this example, let’s say we want the
data for the previous hour:

>>> import datetime
>>> end = datetime.datetime.now()
>>> start = end - datetime.timedelta(hours=1)

We also need to supply the Statistic that we want reported and
the Units to use for the results. The Statistic can be one of these
values:

['Minimum', 'Maximum', 'Sum', 'Average', 'SampleCount']

And Units must be one of the following:

['Seconds', 'Percent', 'Bytes', 'Bits', 'Count',
'Bytes/Second', 'Bits/Second', 'Count/Second']

The query method also takes an optional parameter, period. This
parameter controls the granularity (in seconds) of the data returned.
The smallest period is 60 seconds and the value must be a multiple
of 60 seconds. So, let’s ask for the average as a percent:

>>> datapoints = m.query(start, end, 'Average', 'Percent')
>>> len(datapoints)
60

Our period was 60 seconds and our duration was one hour so
we should get 60 data points back and we can see that we did.
Each element in the datapoints list is a DataPoint object
which is a simple subclass of a Python dict object. Each
Datapoint object contains all of the information available
about that particular data point.:

>>> d = datapoints[0]
>>> d
{u'Average': 0.0,
 u'SampleCount': 1.0,
 u'Timestamp': u'2009-05-21T19:55:00Z',
 u'Unit': u'Percent'}

My server obviously isn’t very busy right now!

CloudWatch Reference

boto.ec2.cloudwatch

This module provides an interface to the Elastic Compute Cloud (EC2)
CloudWatch service from AWS.

	
class boto.ec2.cloudwatch.CloudWatchConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/')

	Init method to create a new connection to EC2 Monitoring Service.

B{Note:} The host argument is overridden by the host specified in the
boto configuration file.

	
APIVersion = '2010-08-01'

	

	
DefaultRegionEndpoint = 'monitoring.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
build_dimension_param(dimension, params)

	

	
build_list_params(params, items, label)

	

	
build_put_params(params, name, value=None, timestamp=None, unit=None, dimensions=None, statistics=None)

	

	
create_alarm(alarm)

	Creates or updates an alarm and associates it with the specified Amazon
CloudWatch metric. Optionally, this operation can associate one or more
Amazon Simple Notification Service resources with the alarm.

When this operation creates an alarm, the alarm state is immediately
set to INSUFFICIENT_DATA. The alarm is evaluated and its StateValue is
set appropriately. Any actions associated with the StateValue is then
executed.

When updating an existing alarm, its StateValue is left unchanged.

	Parameters:	alarm (boto.ec2.cloudwatch.alarm.MetricAlarm) – MetricAlarm object.

	
delete_alarms(alarms)

	Deletes all specified alarms. In the event of an error, no
alarms are deleted.

	Parameters:	alarms (list) – List of alarm names.

	
describe_alarm_history(alarm_name=None, start_date=None, end_date=None, max_records=None, history_item_type=None, next_token=None)

	Retrieves history for the specified alarm. Filter alarms by date range
or item type. If an alarm name is not specified, Amazon CloudWatch
returns histories for all of the owner’s alarms.

Amazon CloudWatch retains the history of deleted alarms for a period of
six weeks. If an alarm has been deleted, its history can still be
queried.

	Parameters:	
	alarm_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the alarm.

	start_date (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The starting date to retrieve alarm history.

	end_date (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The starting date to retrieve alarm history.

	history_item_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of alarm histories to retreive
(ConfigurationUpdate | StateUpdate | Action)

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of alarm descriptions
to retrieve.

	next_token (string [https://docs.python.org/2/library/string.html#module-string]) – The token returned by a previous call to indicate
that there is more data.

:rtype list

	
describe_alarms(action_prefix=None, alarm_name_prefix=None, alarm_names=None, max_records=None, state_value=None, next_token=None)

	Retrieves alarms with the specified names. If no name is specified, all
alarms for the user are returned. Alarms can be retrieved by using only
a prefix for the alarm name, the alarm state, or a prefix for any
action.

	Parameters:	
	action_name – The action name prefix.

	alarm_name_prefix (string [https://docs.python.org/2/library/string.html#module-string]) – The alarm name prefix. AlarmNames cannot
be specified if this parameter is specified.

	alarm_names (list) – A list of alarm names to retrieve information for.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of alarm descriptions
to retrieve.

	state_value (string [https://docs.python.org/2/library/string.html#module-string]) – The state value to be used in matching alarms.

	next_token (string [https://docs.python.org/2/library/string.html#module-string]) – The token returned by a previous call to
indicate that there is more data.

:rtype list

	
describe_alarms_for_metric(metric_name, namespace, period=None, statistic=None, dimensions=None, unit=None)

	Retrieves all alarms for a single metric. Specify a statistic, period,
or unit to filter the set of alarms further.

	Parameters:	
	metric_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the metric

	namespace (string [https://docs.python.org/2/library/string.html#module-string]) – The namespace of the metric.

	period (int [https://docs.python.org/2/library/functions.html#int]) – The period in seconds over which the statistic
is applied.

	statistic (string [https://docs.python.org/2/library/string.html#module-string]) – The statistic for the metric.

	dimension_filters – A dictionary containing name/value pairs
that will be used to filter the results.
The key in the dictionary is the name of
a Dimension. The value in the dictionary
is either a scalar value of that Dimension
name that you want to filter on, a list
of values to filter on or None if
you want all metrics with that Dimension name.

:rtype list

	
disable_alarm_actions(alarm_names)

	Disables actions for the specified alarms.

	Parameters:	alarms (list) – List of alarm names.

	
enable_alarm_actions(alarm_names)

	Enables actions for the specified alarms.

	Parameters:	alarms (list) – List of alarm names.

	
get_metric_statistics(period, start_time, end_time, metric_name, namespace, statistics, dimensions=None, unit=None)

	Get time-series data for one or more statistics of a given metric.

	Parameters:	
	period (integer) – The granularity, in seconds, of the returned datapoints.
Period must be at least 60 seconds and must be a multiple
of 60. The default value is 60.

	start_time (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The time stamp to use for determining the first
datapoint to return. The value specified is
inclusive; results include datapoints with the
time stamp specified.

	end_time (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The time stamp to use for determining the last
datapoint to return. The value specified is
exclusive; results will include datapoints up to
the time stamp specified.

	metric_name (string [https://docs.python.org/2/library/string.html#module-string]) – The metric name.

	namespace (string [https://docs.python.org/2/library/string.html#module-string]) – The metric’s namespace.

	statistics (list) – A list of statistics names Valid values:
Average | Sum | SampleCount | Maximum | Minimum

	dimensions (dict) – A dictionary of dimension key/values where
the key is the dimension name and the value
is either a scalar value or an iterator
of values to be associated with that
dimension.

	Return type:	list

	
list_metrics(next_token=None, dimensions=None, metric_name=None, namespace=None)

	Returns a list of the valid metrics for which there is recorded
data available.

	Parameters:	
	next_token (str [https://docs.python.org/2/library/functions.html#str]) – A maximum of 500 metrics will be returned at one
time. If more results are available, the
ResultSet returned will contain a non-Null
next_token attribute. Passing that token as a
parameter to list_metrics will retrieve the
next page of metrics.

	dimension_filters – A dictionary containing name/value pairs
that will be used to filter the results.
The key in the dictionary is the name of
a Dimension. The value in the dictionary
is either a scalar value of that Dimension
name that you want to filter on, a list
of values to filter on or None if
you want all metrics with that Dimension name.

	metric_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the Metric to filter against. If None,
all Metric names will be returned.

	namespace (str [https://docs.python.org/2/library/functions.html#str]) – A Metric namespace to filter against (e.g. AWS/EC2).
If None, Metrics from all namespaces will be returned.

	
put_metric_alarm(alarm)

	Creates or updates an alarm and associates it with the specified Amazon
CloudWatch metric. Optionally, this operation can associate one or more
Amazon Simple Notification Service resources with the alarm.

When this operation creates an alarm, the alarm state is immediately
set to INSUFFICIENT_DATA. The alarm is evaluated and its StateValue is
set appropriately. Any actions associated with the StateValue is then
executed.

When updating an existing alarm, its StateValue is left unchanged.

	Parameters:	alarm (boto.ec2.cloudwatch.alarm.MetricAlarm) – MetricAlarm object.

	
put_metric_data(namespace, name, value=None, timestamp=None, unit=None, dimensions=None, statistics=None)

	Publishes metric data points to Amazon CloudWatch. Amazon Cloudwatch
associates the data points with the specified metric. If the specified
metric does not exist, Amazon CloudWatch creates the metric. If a list
is specified for some, but not all, of the arguments, the remaining
arguments are repeated a corresponding number of times.

	Parameters:	
	namespace (str [https://docs.python.org/2/library/functions.html#str]) – The namespace of the metric.

	name (str [https://docs.python.org/2/library/functions.html#str] or list) – The name of the metric.

	value (float [https://docs.python.org/2/library/functions.html#float] or list) – The value for the metric.

	timestamp (datetime [https://docs.python.org/2/library/datetime.html#module-datetime] or list) – The time stamp used for the metric. If not specified,
the default value is set to the time the metric data was received.

	unit (string [https://docs.python.org/2/library/string.html#module-string] or list) – The unit of the metric. Valid Values: Seconds |
Microseconds | Milliseconds | Bytes | Kilobytes |
Megabytes | Gigabytes | Terabytes | Bits | Kilobits |
Megabits | Gigabits | Terabits | Percent | Count |
Bytes/Second | Kilobytes/Second | Megabytes/Second |
Gigabytes/Second | Terabytes/Second | Bits/Second |
Kilobits/Second | Megabits/Second | Gigabits/Second |
Terabits/Second | Count/Second | None

	dimensions (dict) – Add extra name value pairs to associate
with the metric, i.e.:
{‘name1’: value1, ‘name2’: (value2, value3)}

	statistics (dict or list) – Use a statistic set instead of a value, for example:

{'maximum': 30, 'minimum': 1, 'samplecount': 100, 'sum': 10000}

	
set_alarm_state(alarm_name, state_reason, state_value, state_reason_data=None)

	Temporarily sets the state of an alarm. When the updated StateValue
differs from the previous value, the action configured for the
appropriate state is invoked. This is not a permanent change. The next
periodic alarm check (in about a minute) will set the alarm to its
actual state.

	Parameters:	
	alarm_name (string [https://docs.python.org/2/library/string.html#module-string]) – Descriptive name for alarm.

	state_reason (string [https://docs.python.org/2/library/string.html#module-string]) – Human readable reason.

	state_value (string [https://docs.python.org/2/library/string.html#module-string]) – OK | ALARM | INSUFFICIENT_DATA

	state_reason_data (string [https://docs.python.org/2/library/string.html#module-string]) – Reason string (will be jsonified).

	
update_alarm(alarm)

	Creates or updates an alarm and associates it with the specified Amazon
CloudWatch metric. Optionally, this operation can associate one or more
Amazon Simple Notification Service resources with the alarm.

When this operation creates an alarm, the alarm state is immediately
set to INSUFFICIENT_DATA. The alarm is evaluated and its StateValue is
set appropriately. Any actions associated with the StateValue is then
executed.

When updating an existing alarm, its StateValue is left unchanged.

	Parameters:	alarm (boto.ec2.cloudwatch.alarm.MetricAlarm) – MetricAlarm object.

	
boto.ec2.cloudwatch.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.ec2.cloudwatch.CloudWatchConnection.

	Parameters:	region_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the region to connect to.

	Return type:	boto.ec2.CloudWatchConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.ec2.cloudwatch.regions()

	Get all available regions for the CloudWatch service.

	Return type:	list

	Returns:	A list of boto.RegionInfo instances

boto.ec2.cloudwatch.datapoint

	
class boto.ec2.cloudwatch.datapoint.Datapoint(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.cloudwatch.metric

	
class boto.ec2.cloudwatch.metric.Metric(connection=None)

	
	
Statistics = ['Minimum', 'Maximum', 'Sum', 'Average', 'SampleCount']

	

	
Units = ['Seconds', 'Microseconds', 'Milliseconds', 'Bytes', 'Kilobytes', 'Megabytes', 'Gigabytes', 'Terabytes', 'Bits', 'Kilobits', 'Megabits', 'Gigabits', 'Terabits', 'Percent', 'Count', 'Bytes/Second', 'Kilobytes/Second', 'Megabytes/Second', 'Gigabytes/Second', 'Terabytes/Second', 'Bits/Second', 'Kilobits/Second', 'Megabits/Second', 'Gigabits/Second', 'Terabits/Second', 'Count/Second', None]

	

	
create_alarm(name, comparison, threshold, period, evaluation_periods, statistic, enabled=True, description=None, dimensions=None, alarm_actions=None, ok_actions=None, insufficient_data_actions=None, unit=None)

	

	
describe_alarms(period=None, statistic=None, dimensions=None, unit=None)

	

	
endElement(name, value, connection)

	

	
query(start_time, end_time, statistics, unit=None, period=60)

	

	
startElement(name, attrs, connection)

	

route53

boto.route53.connection

	
class boto.route53.connection.Route53Connection(aws_access_key_id=None, aws_secret_access_key=None, port=None, proxy=None, proxy_port=None, host='route53.amazonaws.com', debug=0)

	
	
DefaultHost = 'route53.amazonaws.com'

	The default Route53 API endpoint to connect to.

	
Version = '2011-05-05'

	Route53 API version.

	
XMLNameSpace = 'https://route53.amazonaws.com/doc/2011-05-05/'

	XML schema for this Route53 API version.

	
change_rrsets(hosted_zone_id, xml_body)

	Create or change the authoritative DNS information for this
Hosted Zone.
Returns a Python data structure with information about the set of
changes, including the Change ID.

	Parameters:	
	hosted_zone_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier for the Hosted Zone

	xml_body (str [https://docs.python.org/2/library/functions.html#str]) – The list of changes to be made, defined in the
XML schema defined by the Route53 service.

	
create_hosted_zone(domain_name, caller_ref=None, comment='')

	Create a new Hosted Zone. Returns a Python data structure with
information about the newly created Hosted Zone.

	Parameters:	
	domain_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the domain. This should be a
fully-specified domain, and should end with a final period
as the last label indication. If you omit the final period,
Amazon Route 53 assumes the domain is relative to the root.
This is the name you have registered with your DNS registrar.
It is also the name you will delegate from your registrar to
the Amazon Route 53 delegation servers returned in
response to this request.A list of strings with the image
IDs wanted.

	caller_ref (str [https://docs.python.org/2/library/functions.html#str]) – A unique string that identifies the request
and that allows failed CreateHostedZone requests to be retried
without the risk of executing the operation twice. If you don’t
provide a value for this, boto will generate a Type 4 UUID and
use that.

	comment (str [https://docs.python.org/2/library/functions.html#str]) – Any comments you want to include about the hosted
zone.

	
delete_hosted_zone(hosted_zone_id)

	

	
get_all_hosted_zones(start_marker=None, zone_list=None)

	Returns a Python data structure with information about all
Hosted Zones defined for the AWS account.

	Parameters:	
	start_marker (int [https://docs.python.org/2/library/functions.html#int]) – start marker to pass when fetching additional
results after a truncated list

	zone_list (list) – a HostedZones list to prepend to results

	
get_all_rrsets(hosted_zone_id, type=None, name=None, identifier=None, maxitems=None)

	Retrieve the Resource Record Sets defined for this Hosted Zone.
Returns the raw XML data returned by the Route53 call.

	Parameters:	
	hosted_zone_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier for the Hosted Zone

	type (str [https://docs.python.org/2/library/functions.html#str]) – The type of resource record set to begin the record
listing from. Valid choices are:

	A

	AAAA

	CNAME

	MX

	NS

	PTR

	SOA

	SPF

	SRV

	TXT

Valid values for weighted resource record sets:

	A

	AAAA

	CNAME

	TXT

Valid values for Zone Apex Aliases:

	A

	AAAA

	name (str [https://docs.python.org/2/library/functions.html#str]) – The first name in the lexicographic ordering of domain
names to be retrieved

	identifier (str [https://docs.python.org/2/library/functions.html#str]) – In a hosted zone that includes weighted resource
record sets (multiple resource record sets with the same DNS
name and type that are differentiated only by SetIdentifier),
if results were truncated for a given DNS name and type,
the value of SetIdentifier for the next resource record
set that has the current DNS name and type

	maxitems (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records

	
get_change(change_id)

	Get information about a proposed set of changes, as submitted
by the change_rrsets method.
Returns a Python data structure with status information about the
changes.

	Parameters:	change_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier for the set of changes.
This ID is returned in the response to the change_rrsets method.

	
get_hosted_zone(hosted_zone_id)

	Get detailed information about a particular Hosted Zone.

	Parameters:	hosted_zone_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier for the Hosted Zone

	
make_request(action, path, headers=None, data='', params=None)

	

boto.route53.hostedzone

	
class boto.route53.hostedzone.HostedZone(id=None, name=None, owner=None, version=None, caller_reference=None, config=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.route53.exception

	
exception boto.route53.exception.DNSServerError(status, reason, body=None, *args)

	

An Introduction to boto’s VPC interface

This tutorial is based on the examples in the Amazon Virtual Private
Cloud Getting Started Guide (http://docs.amazonwebservices.com/AmazonVPC/latest/GettingStartedGuide/).
In each example, it tries to show the boto request that correspond to
the AWS command line tools.

Creating a VPC connection

First, we need to create a new VPC connection:

>>> from boto.vpc import VPCConnection
>>> c = VPCConnection()

To create a VPC

Now that we have a VPC connection, we can create our first VPC.

>>> vpc = c.create_vpc('10.0.0.0/24')
>>> vpc
VPC:vpc-6b1fe402
>>> vpc.id
u'vpc-6b1fe402'
>>> vpc.state
u'pending'
>>> vpc.cidr_block
u'10.0.0.0/24'
>>> vpc.dhcp_options_id
u'default'
>>>

To create a subnet

The next step is to create a subnet to associate with your VPC.

>>> subnet = c.create_subnet(vpc.id, '10.0.0.0/25')
>>> subnet.id
u'subnet-6a1fe403'
>>> subnet.state
u'pending'
>>> subnet.cidr_block
u'10.0.0.0/25'
>>> subnet.available_ip_address_count
123
>>> subnet.availability_zone
u'us-east-1b'
>>>

To create a customer gateway

Next, we create a customer gateway.

>>> cg = c.create_customer_gateway('ipsec.1', '12.1.2.3', 65534)
>>> cg.id
u'cgw-b6a247df'
>>> cg.type
u'ipsec.1'
>>> cg.state
u'available'
>>> cg.ip_address
u'12.1.2.3'
>>> cg.bgp_asn
u'65534'
>>>

To create a VPN gateway

>>> vg = c.create_vpn_gateway('ipsec.1')
>>> vg.id
u'vgw-44ad482d'
>>> vg.type
u'ipsec.1'
>>> vg.state
u'pending'
>>> vg.availability_zone
u'us-east-1b'
>>>

Attaching a VPN Gateway to a VPC

>>> vg.attach(vpc.id)
>>>

VPC

boto.vpc

Represents a connection to the EC2 service.

	
class boto.vpc.VPCConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, host=None, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', api_version=None, security_token=None)

	Init method to create a new connection to EC2.

	
associate_dhcp_options(dhcp_options_id, vpc_id)

	Associate a set of Dhcp Options with a VPC.

	Parameters:	
	dhcp_options_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the Dhcp Options

	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
associate_route_table(route_table_id, subnet_id)

	Associates a route table with a specific subnet.

	Parameters:	
	route_table_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the route table to associate.

	subnet_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the subnet to associate with.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The ID of the association created

	
attach_internet_gateway(internet_gateway_id, vpc_id)

	Attach an internet gateway to a specific VPC.

	Parameters:	
	internet_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the internet gateway to delete.

	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC to attach to.

	Return type:	Bool

	Returns:	True if successful

	
attach_vpn_gateway(vpn_gateway_id, vpc_id)

	Attaches a VPN gateway to a VPC.

	Parameters:	
	vpn_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the vpn_gateway to attach

	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC you want to attach the gateway to.

	Return type:	An attachment

	Returns:	a boto.vpc.vpngateway.Attachment

	
create_customer_gateway(type, ip_address, bgp_asn)

	Create a new Customer Gateway

	Parameters:	
	type (str [https://docs.python.org/2/library/functions.html#str]) – Type of VPN Connection. Only valid valid currently is ‘ipsec.1’

	ip_address (str [https://docs.python.org/2/library/functions.html#str]) – Internet-routable IP address for customer’s gateway.
Must be a static address.

	bgp_asn (str [https://docs.python.org/2/library/functions.html#str]) – Customer gateway’s Border Gateway Protocol (BGP)
Autonomous System Number (ASN)

	Return type:	The newly created CustomerGateway

	Returns:	A boto.vpc.customergateway.CustomerGateway object

	
create_dhcp_options(vpc_id, cidr_block, availability_zone=None)

	Create a new DhcpOption

	Parameters:	
	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC where you want to create the subnet.

	cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – The CIDR block you want the subnet to cover.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – The AZ you want the subnet in

	Return type:	The newly created DhcpOption

	Returns:	A boto.vpc.customergateway.DhcpOption object

	
create_internet_gateway()

	Creates an internet gateway for VPC.

	Return type:	Newly created internet gateway.

	Returns:	boto.vpc.internetgateway.InternetGateway

	
create_route(route_table_id, destination_cidr_block, gateway_id=None, instance_id=None)

	Creates a new route in the route table within a VPC. The route’s target
can be either a gateway attached to the VPC or a NAT instance in the
VPC.

	Parameters:	
	route_table_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the route table for the route.

	destination_cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – The CIDR address block used for the
destination match.

	gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the gateway attached to your VPC.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of a NAT instance in your VPC.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
create_route_table(vpc_id)

	Creates a new route table.

	Parameters:	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The VPC ID to associate this route table with.

	Return type:	The newly created route table

	Returns:	A boto.vpc.routetable.RouteTable object

	
create_subnet(vpc_id, cidr_block, availability_zone=None)

	Create a new Subnet

	Parameters:	
	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC where you want to create the subnet.

	cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – The CIDR block you want the subnet to cover.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – The AZ you want the subnet in

	Return type:	The newly created Subnet

	Returns:	A boto.vpc.customergateway.Subnet object

	
create_vpc(cidr_block)

	Create a new Virtual Private Cloud.

	Parameters:	cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – A valid CIDR block

	Return type:	The newly created VPC

	Returns:	A boto.vpc.vpc.VPC object

	
create_vpn_connection(type, customer_gateway_id, vpn_gateway_id)

	Create a new VPN Connection.

	Parameters:	
	type (str [https://docs.python.org/2/library/functions.html#str]) – The type of VPN Connection. Currently only ‘ipsec.1’
is supported

	customer_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the customer gateway.

	vpn_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPN gateway.

	Return type:	The newly created VpnConnection

	Returns:	A boto.vpc.vpnconnection.VpnConnection object

	
create_vpn_gateway(type, availability_zone=None)

	Create a new Vpn Gateway

	Parameters:	
	type (str [https://docs.python.org/2/library/functions.html#str]) – Type of VPN Connection. Only valid valid currently is ‘ipsec.1’

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – The Availability Zone where you want the VPN gateway.

	Return type:	The newly created VpnGateway

	Returns:	A boto.vpc.vpngateway.VpnGateway object

	
delete_customer_gateway(customer_gateway_id)

	Delete a Customer Gateway.

	Parameters:	customer_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the customer_gateway to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_dhcp_options(dhcp_options_id)

	Delete a DHCP Options

	Parameters:	dhcp_options_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the DHCP Options to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_internet_gateway(internet_gateway_id)

	Deletes an internet gateway from the VPC.

	Parameters:	internet_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the internet gateway to delete.

	Return type:	Bool

	Returns:	True if successful

	
delete_route(route_table_id, destination_cidr_block)

	Deletes a route from a route table within a VPC.

	Parameters:	
	route_table_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the route table with the route.

	destination_cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – The CIDR address block used for
destination match.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_route_table(route_table_id)

	Delete a route table.

	Parameters:	route_table_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the route table to delete.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_subnet(subnet_id)

	Delete a subnet.

	Parameters:	subnet_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the subnet to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_vpc(vpc_id)

	Delete a Virtual Private Cloud.

	Parameters:	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the vpc to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_vpn_connection(vpn_connection_id)

	Delete a VPN Connection.

	Parameters:	vpn_connection_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the vpn_connection to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_vpn_gateway(vpn_gateway_id)

	Delete a Vpn Gateway.

	Parameters:	vpn_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the vpn_gateway to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
detach_internet_gateway(internet_gateway_id, vpc_id)

	Detach an internet gateway from a specific VPC.

	Parameters:	
	internet_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the internet gateway to delete.

	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC to attach to.

	Return type:	Bool

	Returns:	True if successful

	
disassociate_route_table(association_id)

	Removes an association from a route table. This will cause all subnets
that would’ve used this association to now use the main routing
association instead.

	Parameters:	association_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the association to disassociate.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
get_all_customer_gateways(customer_gateway_ids=None, filters=None)

	Retrieve information about your CustomerGateways. You can filter results to
return information only about those CustomerGateways that match your search
parameters. Otherwise, all CustomerGateways associated with your account
are returned.

	Parameters:	
	customer_gateway_ids (list) – A list of strings with the desired CustomerGateway ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the CustomerGateway
(pending,available,deleting,deleted)

	type, the type of customer gateway (ipsec.1)

	ipAddress the IP address of customer gateway’s
internet-routable external inteface

	Return type:	list

	Returns:	A list of boto.vpc.customergateway.CustomerGateway

	
get_all_dhcp_options(dhcp_options_ids=None)

	Retrieve information about your DhcpOptions.

	Parameters:	dhcp_options_ids (list) – A list of strings with the desired DhcpOption ID’s

	Return type:	list

	Returns:	A list of boto.vpc.dhcpoptions.DhcpOptions

	
get_all_internet_gateways(internet_gateway_ids=None, filters=None)

	Get a list of internet gateways. You can filter results to return information
about only those gateways that you’re interested in.

	Parameters:	
	internet_gateway_ids (list) – A list of strings with the desired gateway IDs.

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.

	
get_all_route_tables(route_table_ids=None, filters=None)

	Retrieve information about your routing tables. You can filter results
to return information only about those route tables that match your
search parameters. Otherwise, all route tables associated with your
account are returned.

	Parameters:	
	route_table_ids (list) – A list of strings with the desired route table
IDs.

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.

	Return type:	list

	Returns:	A list of boto.vpc.routetable.RouteTable

	
get_all_subnets(subnet_ids=None, filters=None)

	Retrieve information about your Subnets. You can filter results to
return information only about those Subnets that match your search
parameters. Otherwise, all Subnets associated with your account
are returned.

	Parameters:	
	subnet_ids (list) – A list of strings with the desired Subnet ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the Subnet
(pending,available)

	vpdId, the ID of teh VPC the subnet is in.

	cidrBlock, CIDR block of the subnet

	availabilityZone, the Availability Zone
the subnet is in.

	Return type:	list

	Returns:	A list of boto.vpc.subnet.Subnet

	
get_all_vpcs(vpc_ids=None, filters=None)

	Retrieve information about your VPCs. You can filter results to
return information only about those VPCs that match your search
parameters. Otherwise, all VPCs associated with your account
are returned.

	Parameters:	
	vpc_ids (list) – A list of strings with the desired VPC ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the VPC (pending or available)

	cidrBlock, CIDR block of the VPC

	dhcpOptionsId, the ID of a set of DHCP options

	Return type:	list

	Returns:	A list of boto.vpc.vpc.VPC

	
get_all_vpn_connections(vpn_connection_ids=None, filters=None)

	Retrieve information about your VPN_CONNECTIONs. You can filter results to
return information only about those VPN_CONNECTIONs that match your search
parameters. Otherwise, all VPN_CONNECTIONs associated with your account
are returned.

	Parameters:	
	vpn_connection_ids (list) – A list of strings with the desired VPN_CONNECTION ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the VPN_CONNECTION
pending,available,deleting,deleted

	type, the type of connection, currently ‘ipsec.1’

	customerGatewayId, the ID of the customer gateway
associated with the VPN

	vpnGatewayId, the ID of the VPN gateway associated
with the VPN connection

	Return type:	list

	Returns:	A list of boto.vpn_connection.vpnconnection.VpnConnection

	
get_all_vpn_gateways(vpn_gateway_ids=None, filters=None)

	Retrieve information about your VpnGateways. You can filter results to
return information only about those VpnGateways that match your search
parameters. Otherwise, all VpnGateways associated with your account
are returned.

	Parameters:	
	vpn_gateway_ids (list) – A list of strings with the desired VpnGateway ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the VpnGateway
(pending,available,deleting,deleted)

	type, the type of customer gateway (ipsec.1)

	availabilityZone, the Availability zone the
VPN gateway is in.

	Return type:	list

	Returns:	A list of boto.vpc.customergateway.VpnGateway

boto.vpc.customergateway

Represents a Customer Gateway

	
class boto.vpc.customergateway.CustomerGateway(connection=None)

	
	
endElement(name, value, connection)

	

boto.vpc.dhcpoptions

Represents a DHCP Options set

	
class boto.vpc.dhcpoptions.DhcpConfigSet

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.vpc.dhcpoptions.DhcpOptions(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.vpc.dhcpoptions.DhcpValueSet

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.vpc.subnet

Represents a Subnet

	
class boto.vpc.subnet.Subnet(connection=None)

	
	
endElement(name, value, connection)

	

boto.vpc.vpc

Represents a Virtual Private Cloud.

	
class boto.vpc.vpc.VPC(connection=None)

	
	
delete()

	

	
endElement(name, value, connection)

	

boto.vpc.vpnconnection

Represents a VPN Connectionn

	
class boto.vpc.vpnconnection.VpnConnection(connection=None)

	
	
delete()

	

	
endElement(name, value, connection)

	

boto.vpc.vpngateway

Represents a Vpn Gateway

	
class boto.vpc.vpngateway.Attachment(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.vpc.vpngateway.VpnGateway(connection=None)

	
	
attach(vpc_id)

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

An Introduction to boto’s Elastic Load Balancing interface

This tutorial focuses on the boto interface for Elastic Load Balancing [http://aws.amazon.com/elasticloadbalancing/]
from Amazon Web Services. This tutorial assumes that you have already
downloaded and installed boto, and are familiar with the boto ec2 interface.

Elastic Load Balancing Concepts

Elastic Load Balancing [http://aws.amazon.com/elasticloadbalancing/] (ELB) is intimately connected with Amazon’s Elastic
Compute Cloud [http://aws.amazon.com/ec2/] (EC2) service. Using the ELB service allows you to create a load
balancer - a DNS endpoint and set of ports that distributes incoming requests
to a set of EC2 instances. The advantages of using a load balancer is that it
allows you to truly scale up or down a set of backend instances without
disrupting service. Before the ELB service, you had to do this manually by
launching an EC2 instance and installing load balancer software on it (nginx,
haproxy, perlbal, etc.) to distribute traffic to other EC2 instances.

Recall that the EC2 service is split into Regions, which are further
divided into Availability Zones (AZ).
For example, the US-East region is divided into us-east-1a, us-east-1b,
us-east-1c, us-east-1d, and us-east-1e. You can think of AZs as data centers -
each runs off a different set of ISP backbones and power providers.
ELB load balancers can span multiple AZs but cannot span multiple regions.
That means that if you’d like to create a set of instances spanning both the
US and Europe Regions you’d have to create two load balancers and have some
sort of other means of distributing requests between the two load balancers.
An example of this could be using GeoIP techniques to choose the correct load
balancer, or perhaps DNS round robin. Keep in mind also that traffic is
distributed equally over all AZs the ELB balancer spans. This means you should
have an equal number of instances in each AZ if you want to equally distribute
load amongst all your instances.

Creating a Connection

The first step in accessing ELB is to create a connection to the service.

>>> import boto
>>> conn = boto.connect_elb(
 aws_access_key_id='YOUR-KEY-ID-HERE',
 aws_secret_access_key='YOUR-SECRET-HERE'
)

A Note About Regions and Endpoints

Like EC2, the ELB service has a different endpoint for each region. By default
the US East endpoint is used. To choose a specific region, instantiate the
ELBConnection object with that region’s information.

>>> from boto.regioninfo import RegionInfo
>>> reg = RegionInfo(
 name='eu-west-1',
 endpoint='elasticloadbalancing.eu-west-1.amazonaws.com'
)
>>> conn = boto.connect_elb(
 aws_access_key_id='YOUR-KEY-ID-HERE',
 aws_secret_access_key='YOUR-SECRET-HERE',
 region=reg
)

Another way to connect to an alternative region is like this:

>>> import boto.ec2.elb
>>> elb = boto.ec2.elb.connect_to_region('eu-west-1')

Here’s yet another way to discover what regions are available and then
connect to one:

>>> import boto.ec2.elb
>>> regions = boto.ec2.elb.regions()
>>> regions
[RegionInfo:us-east-1,
 RegionInfo:ap-northeast-1,
 RegionInfo:us-west-1,
 RegionInfo:ap-southeast-1,
 RegionInfo:eu-west-1]
>>> elb = regions[-1].connect()

Alternatively, edit your boto.cfg with the default ELB endpoint to use:

[Boto]
elb_region_name = eu-west-1
elb_region_endpoint = elasticloadbalancing.eu-west-1.amazonaws.com

Getting Existing Load Balancers

To retrieve any exiting load balancers:

>>> conn.get_all_load_balancers()
[LoadBalancer:load-balancer-prod, LoadBalancer:load-balancer-staging]

You can also filter by name

>>> conn.get_all_load_balancers(load_balancer_names=['load-balancer-prod'])
[LoadBalancer:load-balancer-prod]

get_all_load_balancers
returns a boto.resultset.ResultSet that contains instances
of boto.ec2.elb.loadbalancer.LoadBalancer, each of which abstracts
access to a load balancer. ResultSet
works very much like a list.

>>> balancers = conn.get_all_load_balancers()
>>> balancers[0]
[LoadBalancer:load-balancer-prod]

Creating a Load Balancer

	To create a load balancer you need the following:

	
	The specific ports and protocols you want to load balancer over, and what port
you want to connect to all instances.

	A health check - the ELB concept of a heart beat or ping. ELB will use this health
check to see whether your instances are up or down. If they go down, the load balancer
will no longer send requests to them.

	A list of Availability Zones you’d like to create your load balancer over.

Ports and Protocols

An incoming connection to your load balancer will come on one or more ports -
for example 80 (HTTP) and 443 (HTTPS). Each can be using a protocol -
currently, the supported protocols are TCP and HTTP. We also need to tell the
load balancer which port to route connects to on each instance. For example,
to create a load balancer for a website that accepts connections on 80 and 443,
and that routes connections to port 8080 and 8443 on each instance, you would
specify that the load balancer ports and protocols are:

	80, 8080, HTTP

	443, 8443, TCP

This says that the load balancer will listen on two ports - 80 and 443.
Connections on 80 will use an HTTP load balancer to forward connections to port
8080 on instances. Likewise, the load balancer will listen on 443 to forward
connections to 8443 on each instance using the TCP balancer. We need to
use TCP for the HTTPS port because it is encrypted at the application
layer. Of course, we could specify the load balancer use TCP for port 80,
however specifying HTTP allows you to let ELB handle some work for you -
for example HTTP header parsing.

Configuring a Health Check

A health check allows ELB to determine which instances are alive and able to
respond to requests. A health check is essentially a tuple consisting of:

	Target: What to check on an instance. For a TCP check this is comprised of:

TCP:PORT_TO_CHECK

Which attempts to open a connection on PORT_TO_CHECK. If the connection opens
successfully, that specific instance is deemed healthy, otherwise it is marked
temporarily as unhealthy. For HTTP, the situation is slightly different:

HTTP:PORT_TO_CHECK/RESOURCE

This means that the health check will connect to the resource /RESOURCE on
PORT_TO_CHECK. If an HTTP 200 status is returned the instance is deemed healthy.

	Interval: How often the check is made. This is given in seconds and defaults
to 30. The valid range of intervals goes from 5 seconds to 600 seconds.

	Timeout: The number of seconds the load balancer will wait for a check to
return a result.

	Unhealthy threshold: The number of consecutive failed checks to deem the
instance as being dead. The default is 5, and the range of valid values lies
from 2 to 10.

The following example creates a health check called instance_health that
simply checks instances every 20 seconds on port 80 over HTTP at the
resource /health for 200 successes.

>>> from boto.ec2.elb import HealthCheck
>>> hc = HealthCheck(
 interval=20,
 healthy_threshold=3,
 unhealthy_threshold=5,
 target='HTTP:8080/health'
)

Putting It All Together

Finally, let’s create a load balancer in the US region that listens on ports
80 and 443 and distributes requests to instances on 8080 and 8443 over HTTP
and TCP. We want the load balancer to span the availability zones
us-east-1a and us-east-1b:

>>> regions = ['us-east-1a', 'us-east-1b']
>>> ports = [(80, 8080, 'http'), (443, 8443, 'tcp')]
>>> lb = conn.create_load_balancer('my-lb', regions, ports)
>>> # This is from the previous section.
>>> lb.configure_health_check(hc)

The load balancer has been created. To see where you can actually connect to
it, do:

>>> print lb.dns_name
my_elb-123456789.us-east-1.elb.amazonaws.com

You can then CNAME map a better name, i.e. www.MYWEBSITE.com to the
above address.

Adding Instances To a Load Balancer

Now that the load balancer has been created, there are two ways to add
instances to it:

	Manually, adding each instance in turn.

	Mapping an autoscale group to the load balancer. Please see the
Autoscale tutorial for information on how to do this.

Manually Adding and Removing Instances

Assuming you have a list of instance ids, you can add them to the load balancer

>>> instance_ids = ['i-4f8cf126', 'i-0bb7ca62']
>>> lb.register_instances(instance_ids)

Keep in mind that these instances should be in Security Groups that match the
internal ports of the load balancer you just created (for this example, they
should allow incoming connections on 8080 and 8443).

To remove instances:

>>> lb.degregister_instances(instance_ids)

Modifying Availability Zones for a Load Balancer

If you wanted to disable one or more zones from an existing load balancer:

>>> lb.disable_zones(['us-east-1a'])

You can then terminate each instance in the disabled zone and then deregister then from your load
balancer.

To enable zones:

>>> lb.enable_zones(['us-east-1c'])

Deleting a Load Balancer

>>> lb.delete()

ELB Reference

boto.ec2.elb

This module provides an interface to the Elastic Compute Cloud (EC2)
load balancing service from AWS.

	
class boto.ec2.elb.ELBConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=False, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/')

	Init method to create a new connection to EC2 Load Balancing Service.

Note

The region argument is overridden by the region specified in
the boto configuration file.

	
APIVersion = '2011-11-15'

	

	
DefaultRegionEndpoint = 'elasticloadbalancing.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
apply_security_groups_to_lb(name, security_groups)

	Applies security groups to the load balancer.
Applying security groups that are already registered with the
Load Balancer has no effect.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the Load Balancer

	security_groups (List of strings) – The name of the security group(s) to add.

	Return type:	List of strings

	Returns:	An updated list of security groups for this Load Balancer.

	
attach_lb_to_subnets(name, subnets)

	Attaches load balancer to one or more subnets.
Attaching subnets that are already registered with the
Load Balancer has no effect.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the Load Balancer

	subnets (List of strings) – The name of the subnet(s) to add.

	Return type:	List of strings

	Returns:	An updated list of subnets for this Load Balancer.

	
build_list_params(params, items, label)

	

	
configure_health_check(name, health_check)

	Define a health check for the EndPoints.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The mnemonic name associated with the load balancer

	health_check (boto.ec2.elb.healthcheck.HealthCheck) – A HealthCheck object populated with the desired
values.

	Return type:	boto.ec2.elb.healthcheck.HealthCheck

	Returns:	The updated boto.ec2.elb.healthcheck.HealthCheck

	
create_app_cookie_stickiness_policy(name, lb_name, policy_name)

	Generates a stickiness policy with sticky session lifetimes that follow
that of an application-generated cookie. This policy can only be
associated with HTTP listeners.

This policy is similar to the policy created by
CreateLBCookieStickinessPolicy, except that the lifetime of the special
Elastic Load Balancing cookie follows the lifetime of the
application-generated cookie specified in the policy configuration. The
load balancer only inserts a new stickiness cookie when the application
response includes a new application cookie.

If the application cookie is explicitly removed or expires, the session
stops being sticky until a new application cookie is issued.

	
create_lb_cookie_stickiness_policy(cookie_expiration_period, lb_name, policy_name)

	Generates a stickiness policy with sticky session lifetimes controlled
by the lifetime of the browser (user-agent) or a specified expiration
period. This policy can only be associated only with HTTP listeners.

When a load balancer implements this policy, the load balancer uses a
special cookie to track the backend server instance for each request.
When the load balancer receives a request, it first checks to see if
this cookie is present in the request. If so, the load balancer sends
the request to the application server specified in the cookie. If not,
the load balancer sends the request to a server that is chosen based on
the existing load balancing algorithm.

A cookie is inserted into the response for binding subsequent requests
from the same user to that server. The validity of the cookie is based
on the cookie expiration time, which is specified in the policy
configuration.

	
create_load_balancer(name, zones, listeners, subnets=None, security_groups=None)

	Create a new load balancer for your account. By default the load
balancer will be created in EC2. To create a load balancer inside a
VPC, parameter zones must be set to None and subnets must not be None.
The load balancer will be automatically created under the VPC that
contains the subnet(s) specified.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The mnemonic name associated with the new load balancer

	zones (List of strings) – The names of the availability zone(s) to add.

	listeners (List of tuples) – Each tuple contains three or four values,
(LoadBalancerPortNumber, InstancePortNumber,
Protocol, [SSLCertificateId])
where LoadBalancerPortNumber and InstancePortNumber
are integer values between 1 and 65535, Protocol is a
string containing either ‘TCP’, ‘HTTP’ or ‘HTTPS’;
SSLCertificateID is the ARN of a AWS AIM certificate,
and must be specified when doing HTTPS.

	Return type:	boto.ec2.elb.loadbalancer.LoadBalancer

	Returns:	The newly created boto.ec2.elb.loadbalancer.LoadBalancer

	
create_load_balancer_listeners(name, listeners)

	Creates a Listener (or group of listeners) for an existing Load Balancer

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the load balancer to create the listeners for

	listeners (List of tuples) – Each tuple contains three values,
(LoadBalancerPortNumber, InstancePortNumber, Protocol,
[SSLCertificateId])
where LoadBalancerPortNumber and InstancePortNumber are
integer values between 1 and 65535, Protocol is a
string containing either ‘TCP’, ‘HTTP’ or ‘HTTPS’;
SSLCertificateID is the ARN of a AWS AIM certificate,
and must be specified when doing HTTPS.

	Returns:	The status of the request

	
delete_lb_policy(lb_name, policy_name)

	Deletes a policy from the LoadBalancer. The specified policy must not
be enabled for any listeners.

	
delete_load_balancer(name)

	Delete a Load Balancer from your account.

	Parameters:	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the Load Balancer to delete

	
delete_load_balancer_listeners(name, ports)

	Deletes a load balancer listener (or group of listeners)

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the load balancer to create the listeners for

	ports (List int) – Each int represents the port on the ELB to be removed

	Returns:	The status of the request

	
deregister_instances(load_balancer_name, instances)

	Remove Instances from an existing Load Balancer.

	Parameters:	
	load_balancer_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the Load Balancer

	instances (List of strings) – The instance ID’s of the EC2 instances to remove.

	Return type:	List of strings

	Returns:	An updated list of instances for this Load Balancer.

	
describe_instance_health(load_balancer_name, instances=None)

	Get current state of all Instances registered to an Load Balancer.

	Parameters:	
	load_balancer_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the Load Balancer

	instances (List of strings) – The instance ID’s of the EC2 instances
to return status for. If not provided,
the state of all instances will be returned.

	Return type:	List of boto.ec2.elb.instancestate.InstanceState

	Returns:	list of state info for instances in this Load Balancer.

	
detach_lb_from_subnets(name, subnets)

	Detaches load balancer from one or more subnets.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the Load Balancer

	subnets (List of strings) – The name of the subnet(s) to detach.

	Return type:	List of strings

	Returns:	An updated list of subnets for this Load Balancer.

	
disable_availability_zones(load_balancer_name, zones_to_remove)

	Remove availability zones from an existing Load Balancer.
All zones must be in the same region as the Load Balancer.
Removing zones that are not registered with the Load Balancer
has no effect.
You cannot remove all zones from an Load Balancer.

	Parameters:	
	load_balancer_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the Load Balancer

	zones (List of strings) – The name of the zone(s) to remove.

	Return type:	List of strings

	Returns:	An updated list of zones for this Load Balancer.

	
enable_availability_zones(load_balancer_name, zones_to_add)

	Add availability zones to an existing Load Balancer
All zones must be in the same region as the Load Balancer
Adding zones that are already registered with the Load Balancer
has no effect.

	Parameters:	
	load_balancer_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the Load Balancer

	zones (List of strings) – The name of the zone(s) to add.

	Return type:	List of strings

	Returns:	An updated list of zones for this Load Balancer.

	
get_all_load_balancers(load_balancer_names=None)

	Retrieve all load balancers associated with your account.

	Parameters:	load_balancer_names (list) – An optional list of load balancer names.

	Return type:	boto.resultset.ResultSet

	Returns:	A ResultSet containing instances of
boto.ec2.elb.loadbalancer.LoadBalancer

	
register_instances(load_balancer_name, instances)

	Add new Instances to an existing Load Balancer.

	Parameters:	
	load_balancer_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the Load Balancer

	instances (List of strings) – The instance ID’s of the EC2 instances to add.

	Return type:	List of strings

	Returns:	An updated list of instances for this Load Balancer.

	
set_lb_listener_SSL_certificate(lb_name, lb_port, ssl_certificate_id)

	Sets the certificate that terminates the specified listener’s SSL
connections. The specified certificate replaces any prior certificate
that was used on the same LoadBalancer and port.

	
set_lb_policies_of_listener(lb_name, lb_port, policies)

	Associates, updates, or disables a policy with a listener on the load
balancer. Currently only zero (0) or one (1) policy can be associated
with a listener.

	
boto.ec2.elb.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.ec2.elb.ELBConnection.

	Parameters:	region_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the region to connect to.

	Return type:	boto.ec2.ELBConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.ec2.elb.regions()

	Get all available regions for the SDB service.

	Return type:	list

	Returns:	A list of boto.RegionInfo instances

boto.ec2.elb.healthcheck

	
class boto.ec2.elb.healthcheck.HealthCheck(access_point=None, interval=30, target=None, healthy_threshold=3, timeout=5, unhealthy_threshold=5)

	Represents an EC2 Access Point Health Check. See
Configuring a Health Check for a walkthrough on configuring
load balancer health checks.

	Variables:	
	access_point (str [https://docs.python.org/2/library/functions.html#str]) – The name of the load balancer this
health check is associated with.

	interval (int [https://docs.python.org/2/library/functions.html#int]) – Specifies how many seconds there are between
health checks.

	target (str [https://docs.python.org/2/library/functions.html#str]) – Determines what to check on an instance. See the
Amazon HealthCheck [http://docs.amazonwebservices.com/ElasticLoadBalancing/latest/APIReference/API_HealthCheck.html] documentation for possible Target values.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
update()

	In the case where you have accessed an existing health check on a
load balancer, this method applies this instance’s health check
values to the load balancer it is attached to.

Note

This method will not do anything if the access_point
attribute isn’t set, as is the case with a newly instantiated
HealthCheck instance.

boto.ec2.elb.instancestate

	
class boto.ec2.elb.instancestate.InstanceState(load_balancer=None, description=None, state=None, instance_id=None, reason_code=None)

	Represents the state of an EC2 Load Balancer Instance

	Variables:	
	load_balancer (boto.ec2.elb.loadbalancer.LoadBalancer) – The
load balancer this instance is registered to.

	description (str [https://docs.python.org/2/library/functions.html#str]) – A description of the instance.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The EC2 instance ID.

	reason_code (str [https://docs.python.org/2/library/functions.html#str]) – Provides information about the cause of
an OutOfService instance. Specifically, it indicates whether the
cause is Elastic Load Balancing or the instance behind the
LoadBalancer.

	state (str [https://docs.python.org/2/library/functions.html#str]) – Specifies the current state of the instance.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.elb.listelement

	
class boto.ec2.elb.listelement.ListElement

	A list subclass that has some additional methods for interacting
with Amazon’s XML API.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.elb.listener

	
class boto.ec2.elb.listener.Listener(load_balancer=None, load_balancer_port=0, instance_port=0, protocol='', ssl_certificate_id=None)

	Represents an EC2 Load Balancer Listener tuple

	
endElement(name, value, connection)

	

	
get_tuple()

	

	
startElement(name, attrs, connection)

	

boto.ec2.elb.loadbalancer

	
class boto.ec2.elb.loadbalancer.LoadBalancer(connection=None, name=None, endpoints=None)

	Represents an EC2 Load Balancer.

	Variables:	
	connection (boto.ec2.elb.ELBConnection) – The connection this load
balancer was instance was instantiated from.

	listeners (list) – A list of tuples in the form of
(<Inbound port>, <Outbound port>, <Protocol>)

	health_check (boto.ec2.elb.healthcheck.HealthCheck) – The health
check policy for this load balancer.

	policies (boto.ec2.elb.policies.Policies) – Cookie stickiness and
other policies.

	dns_name (str [https://docs.python.org/2/library/functions.html#str]) – The external DNS name for the balancer.

	created_time (str [https://docs.python.org/2/library/functions.html#str]) – A date+time string showing when the
load balancer was created.

	instances (list) – A list of boto.ec2.instanceinfo.InstanceInfo
instances, representing the EC2 instances this load balancer is
distributing requests to.

	availability_zones (list) – The availability zones this balancer
covers.

	canonical_hosted_zone_name (str [https://docs.python.org/2/library/functions.html#str]) – Current CNAME for the balancer.

	canonical_hosted_zone_name_id (str [https://docs.python.org/2/library/functions.html#str]) – The Route 53 hosted zone
ID of this balancer. Needed when creating an Alias record in a
Route 53 hosted zone.

	source_security_group (boto.ec2.elb.securitygroup.SecurityGroup) – The security group that you can use as part of your inbound rules
for your load balancer back-end instances to disallow traffic
from sources other than your load balancer.

	subnets (list) – A list of subnets this balancer is on.

	security_groups (list) – A list of additional security groups that
have been applied.

	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC that this ELB resides within.

	
apply_security_groups(security_groups)

	Applies security groups to the load balancer.
Applying security groups that are already registered with the
Load Balancer has no effect.

	Parameters:	security_groups (string [https://docs.python.org/2/library/string.html#module-string] or List of strings) – The name of the security group(s) to add.

	
attach_subnets(subnets)

	Attaches load balancer to one or more subnets.
Attaching subnets that are already registered with the
Load Balancer has no effect.

	Parameters:	subnets (string [https://docs.python.org/2/library/string.html#module-string] or List of strings) – The name of the subnet(s) to add.

	
configure_health_check(health_check)

	Configures the health check behavior for the instances behind this
load balancer. See Configuring a Health Check for a
walkthrough.

	Parameters:	health_check (boto.ec2.elb.healthcheck.HealthCheck) – A
HealthCheck instance that tells the load balancer how to check
its instances for health.

	
create_app_cookie_stickiness_policy(name, policy_name)

	

	
create_cookie_stickiness_policy(cookie_expiration_period, policy_name)

	

	
create_listener(inPort, outPort=None, proto='tcp')

	

	
create_listeners(listeners)

	

	
delete()

	Delete this load balancer.

	
delete_listener(inPort)

	

	
delete_listeners(listeners)

	

	
delete_policy(policy_name)

	Deletes a policy from the LoadBalancer. The specified policy must not
be enabled for any listeners.

	
deregister_instances(instances)

	Remove instances from this load balancer. Removing instances that are
not registered with the load balancer has no effect.

	Parameters:	instances (list) – List of instance IDs (strings) that you’d like
to remove from this load balancer.

	
detach_subnets(subnets)

	Detaches load balancer from one or more subnets.

	Parameters:	subnets (string [https://docs.python.org/2/library/string.html#module-string] or List of strings) – The name of the subnet(s) to detach.

	
disable_zones(zones)

	Disable availability zones from this Access Point.

	Parameters:	zones (string [https://docs.python.org/2/library/string.html#module-string] or List of strings) – The name of the zone(s) to add.

	
enable_zones(zones)

	Enable availability zones to this Access Point.
All zones must be in the same region as the Access Point.

	Parameters:	zones (string [https://docs.python.org/2/library/string.html#module-string] or List of strings) – The name of the zone(s) to add.

	
endElement(name, value, connection)

	

	
get_instance_health(instances=None)

	Returns a list of boto.ec2.elb.instancestate.InstanceState
objects, which show the health of the instances attached to this
load balancer.

	Return type:	list

	Returns:	A list of
InstanceState
instances, representing the instances
attached to this load balancer.

	
register_instances(instances)

	Adds instances to this load balancer. All instances must be in the same
region as the load balancer. Adding endpoints that are already
registered with the load balancer has no effect.

	Parameters:	instances (list) – List of instance IDs (strings) that you’d like
to add to this load balancer.

	
set_listener_SSL_certificate(lb_port, ssl_certificate_id)

	

	
set_policies_of_listener(lb_port, policies)

	

	
startElement(name, attrs, connection)

	

fps

boto.fps

boto.fps.connection

	
class boto.fps.connection.FPSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host='fps.sandbox.amazonaws.com', debug=0, https_connection_factory=None, path='/')

	
	
APIVersion = '2007-01-08'

	

	
cancel(transactionId, description=None)

	Cancels a reserved or pending transaction.

	
get_recipient_verification_status(recipientTokenId)

	Test that the intended recipient has a verified Amazon Payments account.

	
get_token_by_caller_reference(callerReference)

	Returns details about the token specified by ‘CallerReference’.

	
get_token_by_caller_token(tokenId)

	Returns details about the token specified by ‘TokenId’.

	
get_transaction_status(transactionId)

	Returns the status of a given transaction.

	
install_caller_instruction(token_type='Unrestricted', transaction_id=None)

	Set us up as a caller
This will install a new caller_token into the FPS section.
This should really only be called to regenerate the caller token.

	
install_payment_instruction(instruction, token_type='Unrestricted', transaction_id=None)

	InstallPaymentInstruction
instruction: The PaymentInstruction to send, for example:

MyRole==’Caller’ orSay ‘Roles do not match’;

token_type: Defaults to “Unrestricted”
transaction_id: Defaults to a new ID

	
install_recipient_instruction(token_type='Unrestricted', transaction_id=None)

	Set us up as a Recipient
This will install a new caller_token into the FPS section.
This should really only be called to regenerate the recipient token.

	
make_marketplace_registration_url(returnURL, pipelineName, maxFixedFee=0.0, maxVariableFee=0.0, recipientPaysFee=True, **params)

	Generate the URL with the signature required for signing up a recipient

	
make_url(returnURL, paymentReason, pipelineName, transactionAmount, **params)

	Generate the URL with the signature required for a transaction

	
pay(transactionAmount, senderTokenId, recipientTokenId=None, callerTokenId=None, chargeFeeTo='Recipient', callerReference=None, senderReference=None, recipientReference=None, senderDescription=None, recipientDescription=None, callerDescription=None, metadata=None, transactionDate=None, reserve=False)

	Make a payment transaction. You must specify the amount.
This can also perform a Reserve request if ‘reserve’ is set to True.

	
refund(callerReference, transactionId, refundAmount=None, callerDescription=None)

	Refund a transaction. This refunds the full amount by default
unless ‘refundAmount’ is specified.

	
settle(reserveTransactionId, transactionAmount=None)

	Charges for a reserved payment.

	
verify_signature(end_point_url, http_parameters)

	

An Introduction to boto’s S3 interface

This tutorial focuses on the boto interface to the Simple Storage Service
from Amazon Web Services. This tutorial assumes that you have already
downloaded and installed boto.

Creating a Connection

The first step in accessing S3 is to create a connection to the service.
There are two ways to do this in boto. The first is:

>>> from boto.s3.connection import S3Connection
>>> conn = S3Connection('<aws access key>', '<aws secret key>')

At this point the variable conn will point to an S3Connection object. In
this example, the AWS access key and AWS secret key are passed in to the
method explicitely. Alternatively, you can set the environment variables:

AWS_ACCESS_KEY_ID - Your AWS Access Key ID
AWS_SECRET_ACCESS_KEY - Your AWS Secret Access Key

and then call the constructor without any arguments, like this:

>>> conn = S3Connection()

There is also a shortcut function in the boto package, called connect_s3
that may provide a slightly easier means of creating a connection:

>>> import boto
>>> conn = boto.connect_s3()

In either case, conn will point to an S3Connection object which we will
use throughout the remainder of this tutorial.

Creating a Bucket

Once you have a connection established with S3, you will probably want to
create a bucket. A bucket is a container used to store key/value pairs
in S3. A bucket can hold an unlimited amount of data so you could potentially
have just one bucket in S3 for all of your information. Or, you could create
separate buckets for different types of data. You can figure all of that out
later, first let’s just create a bucket. That can be accomplished like this:

>>> bucket = conn.create_bucket('mybucket')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "boto/connection.py", line 285, in create_bucket
 raise S3CreateError(response.status, response.reason)
boto.exception.S3CreateError: S3Error[409]: Conflict

Whoa. What happended there? Well, the thing you have to know about
buckets is that they are kind of like domain names. It’s one flat name
space that everyone who uses S3 shares. So, someone has already create
a bucket called “mybucket” in S3 and that means no one else can grab that
bucket name. So, you have to come up with a name that hasn’t been taken yet.
For example, something that uses a unique string as a prefix. Your
AWS_ACCESS_KEY (NOT YOUR SECRET KEY!) could work but I’ll leave it to
your imagination to come up with something. I’ll just assume that you
found an acceptable name.

The create_bucket method will create the requested bucket if it does not
exist or will return the existing bucket if it does exist.

Creating a Bucket In Another Location

The example above assumes that you want to create a bucket in the
standard US region. However, it is possible to create buckets in
other locations. To do so, first import the Location object from the
boto.s3.connection module, like this:

>>> from boto.s3.connection import Location
>>> dir(Location)
['DEFAULT', 'EU', 'USWest', 'APSoutheast', '__doc__', '__module__']
>>>

As you can see, the Location object defines three possible locations;
DEFAULT, EU, USWest, and APSoutheast. By default, the location is the
empty string which is interpreted as the US Classic Region, the
original S3 region. However, by specifying another location at the
time the bucket is created, you can instruct S3 to create the bucket
in that location. For example:

>>> conn.create_bucket('mybucket', location=Location.EU)

will create the bucket in the EU region (assuming the name is available).

Storing Data

Once you have a bucket, presumably you will want to store some data
in it. S3 doesn’t care what kind of information you store in your objects
or what format you use to store it. All you need is a key that is unique
within your bucket.

The Key object is used in boto to keep track of data stored in S3. To store
new data in S3, start by creating a new Key object:

>>> from boto.s3.key import Key
>>> k = Key(bucket)
>>> k.key = 'foobar'
>>> k.set_contents_from_string('This is a test of S3')

The net effect of these statements is to create a new object in S3 with a
key of “foobar” and a value of “This is a test of S3”. To validate that
this worked, quit out of the interpreter and start it up again. Then:

>>> import boto
>>> c = boto.connect_s3()
>>> b = c.create_bucket('mybucket') # substitute your bucket name here
>>> from boto.s3.key import Key
>>> k = Key(b)
>>> k.key = 'foobar'
>>> k.get_contents_as_string()
'This is a test of S3'

So, we can definitely store and retrieve strings. A more interesting
example may be to store the contents of a local file in S3 and then retrieve
the contents to another local file.

>>> k = Key(b)
>>> k.key = 'myfile'
>>> k.set_contents_from_filename('foo.jpg')
>>> k.get_contents_to_filename('bar.jpg')

There are a couple of things to note about this. When you send data to
S3 from a file or filename, boto will attempt to determine the correct
mime type for that file and send it as a Content-Type header. The boto
package uses the standard mimetypes package in Python to do the mime type
guessing. The other thing to note is that boto does stream the content
to and from S3 so you should be able to send and receive large files without
any problem.

Listing All Available Buckets

In addition to accessing specific buckets via the create_bucket method
you can also get a list of all available buckets that you have created.

>>> rs = conn.get_all_buckets()

This returns a ResultSet object (see the SQS Tutorial for more info on
ResultSet objects). The ResultSet can be used as a sequence or list type
object to retrieve Bucket objects.

>>> len(rs)
11
>>> for b in rs:
... print b.name
...
<listing of available buckets>
>>> b = rs[0]

Setting / Getting the Access Control List for Buckets and Keys

The S3 service provides the ability to control access to buckets and keys
within s3 via the Access Control List (ACL) associated with each object in
S3. There are two ways to set the ACL for an object:

	Create a custom ACL that grants specific rights to specific users. At the
moment, the users that are specified within grants have to be registered
users of Amazon Web Services so this isn’t as useful or as general as it
could be.

	Use a “canned” access control policy. There are four canned policies
defined:
a. private: Owner gets FULL_CONTROL. No one else has any access rights.
b. public-read: Owners gets FULL_CONTROL and the anonymous principal is granted READ access.
c. public-read-write: Owner gets FULL_CONTROL and the anonymous principal is granted READ and WRITE access.
d. authenticated-read: Owner gets FULL_CONTROL and any principal authenticated as a registered Amazon S3 user is granted READ access.

To set a canned ACL for a bucket, use the set_acl method of the Bucket object.
The argument passed to this method must be one of the four permissable
canned policies named in the list CannedACLStrings contained in acl.py.
For example, to make a bucket readable by anyone:

>>> b.set_acl('public-read')

You can also set the ACL for Key objects, either by passing an additional
argument to the above method:

>>> b.set_acl('public-read', 'foobar')

where ‘foobar’ is the key of some object within the bucket b or you can
call the set_acl method of the Key object:

>>> k.set_acl('public-read')

You can also retrieve the current ACL for a Bucket or Key object using the
get_acl object. This method parses the AccessControlPolicy response sent
by S3 and creates a set of Python objects that represent the ACL.

>>> acp = b.get_acl()
>>> acp
<boto.acl.Policy instance at 0x2e6940>
>>> acp.acl
<boto.acl.ACL instance at 0x2e69e0>
>>> acp.acl.grants
[<boto.acl.Grant instance at 0x2e6a08>]
>>> for grant in acp.acl.grants:
... print grant.permission, grant.display_name, grant.email_address, grant.id
...
FULL_CONTROL <boto.user.User instance at 0x2e6a30>

The Python objects representing the ACL can be found in the acl.py module
of boto.

Both the Bucket object and the Key object also provide shortcut
methods to simplify the process of granting individuals specific
access. For example, if you want to grant an individual user READ
access to a particular object in S3 you could do the following:

>>> key = b.lookup('mykeytoshare')
>>> key.add_email_grant('READ', 'foo@bar.com')

The email address provided should be the one associated with the users
AWS account. There is a similar method called add_user_grant that accepts the
canonical id of the user rather than the email address.

Setting/Getting Metadata Values on Key Objects

S3 allows arbitrary user metadata to be assigned to objects within a bucket.
To take advantage of this S3 feature, you should use the set_metadata and
get_metadata methods of the Key object to set and retrieve metadata associated
with an S3 object. For example:

>>> k = Key(b)
>>> k.key = 'has_metadata'
>>> k.set_metadata('meta1', 'This is the first metadata value')
>>> k.set_metadata('meta2', 'This is the second metadata value')
>>> k.set_contents_from_filename('foo.txt')

This code associates two metadata key/value pairs with the Key k. To retrieve
those values later:

>>> k = b.get_key('has_metadata)
>>> k.get_metadata('meta1')
'This is the first metadata value'
>>> k.get_metadata('meta2')
'This is the second metadata value'
>>>

S3

boto.s3.acl

	
class boto.s3.acl.ACL(policy=None)

	
	
add_email_grant(permission, email_address)

	

	
add_grant(grant)

	

	
add_user_grant(permission, user_id, display_name=None)

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.s3.acl.Grant(permission=None, type=None, id=None, display_name=None, uri=None, email_address=None)

	
	
NameSpace = 'xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"'

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.s3.acl.Policy(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

boto.s3.bucket

	
class boto.s3.bucket.Bucket(connection=None, name=None, key_class=<class 'boto.s3.key.Key'>)

	
	
BucketLoggingBody = '<?xml version="1.0" encoding="UTF-8"?>\n <BucketLoggingStatus xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n <LoggingEnabled>\n <TargetBucket>%s</TargetBucket>\n <TargetPrefix>%s</TargetPrefix>\n </LoggingEnabled>\n </BucketLoggingStatus>'

	

	
BucketPaymentBody = '<?xml version="1.0" encoding="UTF-8"?>\n <RequestPaymentConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n <Payer>%s</Payer>\n </RequestPaymentConfiguration>'

	

	
EmptyBucketLoggingBody = '<?xml version="1.0" encoding="UTF-8"?>\n <BucketLoggingStatus xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n </BucketLoggingStatus>'

	

	
LoggingGroup = 'http://acs.amazonaws.com/groups/s3/LogDelivery'

	

	
MFADeleteRE = '<MfaDelete>([A-Za-z]+)</MfaDelete>'

	

	
VersionRE = '<Status>([A-Za-z]+)</Status>'

	

	
VersioningBody = '<?xml version="1.0" encoding="UTF-8"?>\n <VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n <Status>%s</Status>\n <MfaDelete>%s</MfaDelete>\n </VersioningConfiguration>'

	

	
WebsiteBody = '<?xml version="1.0" encoding="UTF-8"?>\n <WebsiteConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n <IndexDocument><Suffix>%s</Suffix></IndexDocument>\n %s\n </WebsiteConfiguration>'

	

	
WebsiteErrorFragment = '<ErrorDocument><Key>%s</Key></ErrorDocument>'

	

	
add_email_grant(permission, email_address, recursive=False, headers=None)

	Convenience method that provides a quick way to add an email grant
to a bucket. This method retrieves the current ACL, creates a new
grant based on the parameters passed in, adds that grant to the ACL
and then PUT’s the new ACL back to S3.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ, WRITE, READ_ACP, WRITE_ACP, FULL_CONTROL).

	email_address (string [https://docs.python.org/2/library/string.html#module-string]) – The email address associated with the AWS
account your are granting the permission to.

	recursive (boolean) – A boolean value to controls whether the command
will apply the grant to all keys within the bucket
or not. The default value is False. By passing a
True value, the call will iterate through all keys
in the bucket and apply the same grant to each key.
CAUTION: If you have a lot of keys, this could take
a long time!

	
add_user_grant(permission, user_id, recursive=False, headers=None, display_name=None)

	Convenience method that provides a quick way to add a canonical
user grant to a bucket. This method retrieves the current ACL,
creates a new grant based on the parameters passed in, adds that
grant to the ACL and then PUT’s the new ACL back to S3.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ, WRITE, READ_ACP, WRITE_ACP, FULL_CONTROL).

	user_id (string [https://docs.python.org/2/library/string.html#module-string]) – The canonical user id associated with the AWS
account your are granting the permission to.

	recursive (boolean) – A boolean value to controls whether the command
will apply the grant to all keys within the bucket
or not. The default value is False. By passing a
True value, the call will iterate through all keys
in the bucket and apply the same grant to each key.
CAUTION: If you have a lot of keys, this could take
a long time!

	display_name (string [https://docs.python.org/2/library/string.html#module-string]) – An option string containing the user’s
Display Name. Only required on Walrus.

	
cancel_multipart_upload(key_name, upload_id, headers=None)

	

	
complete_multipart_upload(key_name, upload_id, xml_body, headers=None)

	Complete a multipart upload operation.

	
configure_lifecycle(lifecycle_config, headers=None)

	Configure lifecycle for this bucket.

	Parameters:	lifecycle_config (boto.s3.lifecycle.Lifecycle) – The lifecycle configuration you want
to configure for this bucket.

	
configure_versioning(versioning, mfa_delete=False, mfa_token=None, headers=None)

	Configure versioning for this bucket.

..note:: This feature is currently in beta.

	Parameters:	
	versioning (bool [https://docs.python.org/2/library/functions.html#bool]) – A boolean indicating whether version is
enabled (True) or disabled (False).

	mfa_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – A boolean indicating whether the Multi-Factor
Authentication Delete feature is enabled (True)
or disabled (False). If mfa_delete is enabled
then all Delete operations will require the
token from your MFA device to be passed in
the request.

	mfa_token (tuple [https://docs.python.org/2/library/functions.html#tuple] or list of strings) – A tuple or list consisting of the serial number
from the MFA device and the current value of
the six-digit token associated with the device.
This value is required when you are changing
the status of the MfaDelete property of
the bucket.

	
configure_website(suffix, error_key='', headers=None)

	Configure this bucket to act as a website

	Parameters:	
	suffix (str [https://docs.python.org/2/library/functions.html#str]) – Suffix that is appended to a request that is for a
“directory” on the website endpoint (e.g. if the suffix
is index.html and you make a request to
samplebucket/images/ the data that is returned will
be for the object with the key name images/index.html).
The suffix must not be empty and must not include a
slash character.

	error_key (str [https://docs.python.org/2/library/functions.html#str]) – The object key name to use when a 4XX class
error occurs. This is optional.

	
copy_key(new_key_name, src_bucket_name, src_key_name, metadata=None, src_version_id=None, storage_class='STANDARD', preserve_acl=False, encrypt_key=False, headers=None, query_args=None)

	Create a new key in the bucket by copying another existing key.

	Parameters:	
	new_key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new key

	src_bucket_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the source bucket

	src_key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the source key

	src_version_id (string [https://docs.python.org/2/library/string.html#module-string]) – The version id for the key. This param
is optional. If not specified, the newest
version of the key will be copied.

	metadata (dict) – Metadata to be associated with new key.
If metadata is supplied, it will replace the
metadata of the source key being copied.
If no metadata is supplied, the source key’s
metadata will be copied to the new key.

	storage_class (string [https://docs.python.org/2/library/string.html#module-string]) – The storage class of the new key.
By default, the new key will use the
standard storage class. Possible values are:
STANDARD | REDUCED_REDUNDANCY

	preserve_acl (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the ACL from the source key
will be copied to the destination
key. If False, the destination key
will have the default ACL.
Note that preserving the ACL in the
new key object will require two
additional API calls to S3, one to
retrieve the current ACL and one to
set that ACL on the new object. If
you don’t care about the ACL, a value
of False will be significantly more
efficient.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	headers (dict) – A dictionary of header name/value pairs.

	query_args (string [https://docs.python.org/2/library/string.html#module-string]) – A string of additional querystring arguments
to append to the request

	Return type:	boto.s3.key.Key or subclass

	Returns:	An instance of the newly created key object

	
delete(headers=None)

	

	
delete_key(key_name, headers=None, version_id=None, mfa_token=None)

	Deletes a key from the bucket. If a version_id is provided,
only that version of the key will be deleted.

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The key name to delete

	version_id (string [https://docs.python.org/2/library/string.html#module-string]) – The version ID (optional)

	mfa_token (tuple [https://docs.python.org/2/library/functions.html#tuple] or list of strings) – A tuple or list consisting of the serial number
from the MFA device and the current value of
the six-digit token associated with the device.
This value is required anytime you are
deleting versioned objects from a bucket
that has the MFADelete option on the bucket.

	
delete_keys(keys, quiet=False, mfa_token=None, headers=None)

	Deletes a set of keys using S3’s Multi-object delete API. If a
VersionID is specified for that key then that version is removed.
Returns a MultiDeleteResult Object, which contains Deleted
and Error elements for each key you ask to delete.

	Parameters:	
	keys (list) – A list of either key_names or (key_name, versionid) pairs
or a list of Key instances.

	quiet (boolean) – In quiet mode the response includes only keys where
the delete operation encountered an error. For a
successful deletion, the operation does not return
any information about the delete in the response body.

	mfa_token (tuple [https://docs.python.org/2/library/functions.html#tuple] or list of strings) – A tuple or list consisting of the serial number
from the MFA device and the current value of
the six-digit token associated with the device.
This value is required anytime you are
deleting versioned objects from a bucket
that has the MFADelete option on the bucket.

	Returns:	An instance of MultiDeleteResult

	
delete_lifecycle_configuration(headers=None)

	Removes all lifecycle configuration from the bucket.

	
delete_policy(headers=None)

	

	
delete_website_configuration(headers=None)

	Removes all website configuration from the bucket.

	
disable_logging(headers=None)

	

	
enable_logging(target_bucket, target_prefix='', headers=None)

	

	
endElement(name, value, connection)

	

	
generate_url(expires_in, method='GET', headers=None, force_http=False, response_headers=None, expires_in_absolute=False)

	

	
get_acl(key_name='', headers=None, version_id=None)

	

	
get_all_keys(headers=None, **params)

	A lower-level method for listing contents of a bucket.
This closely models the actual S3 API and requires you to manually
handle the paging of results. For a higher-level method
that handles the details of paging for you, you can use the list method.

	Parameters:	
	max_keys (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of keys to retrieve

	prefix (string [https://docs.python.org/2/library/string.html#module-string]) – The prefix of the keys you want to retrieve

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set

	delimiter (string [https://docs.python.org/2/library/string.html#module-string]) – If this optional, Unicode string parameter
is included with your request, then keys that
contain the same string between the prefix and
the first occurrence of the delimiter will be
rolled up into a single result element in the
CommonPrefixes collection. These rolled-up keys
are not returned elsewhere in the response.

	Return type:	ResultSet

	Returns:	The result from S3 listing the keys requested

	
get_all_multipart_uploads(headers=None, **params)

	A lower-level, version-aware method for listing active
MultiPart uploads for a bucket. This closely models the
actual S3 API and requires you to manually handle the paging
of results. For a higher-level method that handles the
details of paging for you, you can use the list method.

	Parameters:	
	max_uploads (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of uploads to retrieve.
Default value is 1000.

	key_marker (string [https://docs.python.org/2/library/string.html#module-string]) – Together with upload_id_marker, this parameter
specifies the multipart upload after which listing
should begin. If upload_id_marker is not specified,
only the keys lexicographically greater than the
specified key_marker will be included in the list.

If upload_id_marker is specified, any multipart
uploads for a key equal to the key_marker might
also be included, provided those multipart uploads
have upload IDs lexicographically greater than the
specified upload_id_marker.

	upload_id_marker (string [https://docs.python.org/2/library/string.html#module-string]) – Together with key-marker, specifies
the multipart upload after which listing
should begin. If key_marker is not specified,
the upload_id_marker parameter is ignored.
Otherwise, any multipart uploads for a key
equal to the key_marker might be included
in the list only if they have an upload ID
lexicographically greater than the specified
upload_id_marker.

	Return type:	ResultSet

	Returns:	The result from S3 listing the uploads requested

	
get_all_versions(headers=None, **params)

	A lower-level, version-aware method for listing contents of a bucket.
This closely models the actual S3 API and requires you to manually
handle the paging of results. For a higher-level method
that handles the details of paging for you, you can use the list method.

	Parameters:	
	max_keys (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of keys to retrieve

	prefix (string [https://docs.python.org/2/library/string.html#module-string]) – The prefix of the keys you want to retrieve

	key_marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set
with respect to keys.

	version_id_marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result
set with respect to version-id’s.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string]) – If this optional, Unicode string parameter
is included with your request, then keys that
contain the same string between the prefix and
the first occurrence of the delimiter will be
rolled up into a single result element in the
CommonPrefixes collection. These rolled-up keys
are not returned elsewhere in the response.

	Return type:	ResultSet

	Returns:	The result from S3 listing the keys requested

	
get_key(key_name, headers=None, version_id=None)

	Check to see if a particular key exists within the bucket. This
method uses a HEAD request to check for the existance of the key.
Returns: An instance of a Key object or None

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key to retrieve

	Return type:	boto.s3.key.Key

	Returns:	A Key object from this bucket.

	
get_lifecycle_config(headers=None)

	Returns the current lifecycle configuration on the bucket.

	Return type:	boto.s3.lifecycle.Lifecycle

	Returns:	A LifecycleConfig object that describes all current
lifecycle rules in effect for the bucket.

	
get_location()

	Returns the LocationConstraint for the bucket.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The LocationConstraint for the bucket or the empty
string if no constraint was specified when bucket
was created.

	
get_logging_status(headers=None)

	

	
get_policy(headers=None)

	Returns the JSON policy associated with the bucket. The policy
is returned as an uninterpreted JSON string.

	
get_request_payment(headers=None)

	

	
get_subresource(subresource, key_name='', headers=None, version_id=None)

	Get a subresource for a bucket or key.

	Parameters:	
	subresource (string [https://docs.python.org/2/library/string.html#module-string]) – The subresource to get.

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The key to operate on, or None to operate on the
bucket.

	headers (dict) – Additional HTTP headers to include in the request.

	src_version_id (string [https://docs.python.org/2/library/string.html#module-string]) – Optional. The version id of the key to operate
on. If not specified, operate on the newest
version.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The value of the subresource.

	
get_versioning_status(headers=None)

	Returns the current status of versioning on the bucket.

	Return type:	dict

	Returns:	A dictionary containing a key named ‘Versioning’
that can have a value of either Enabled, Disabled,
or Suspended. Also, if MFADelete has ever been enabled
on the bucket, the dictionary will contain a key
named ‘MFADelete’ which will have a value of either
Enabled or Suspended.

	
get_website_configuration(headers=None)

	Returns the current status of website configuration on the bucket.

	Return type:	dict

	Returns:	A dictionary containing a Python representation
of the XML response from S3. The overall structure is:

	WebsiteConfiguration
	IndexDocument
	Suffix : suffix that is appended to request that
is for a “directory” on the website endpoint

	ErrorDocument
	Key : name of object to serve when an error occurs

	
get_website_endpoint()

	Returns the fully qualified hostname to use is you want to access this
bucket as a website. This doesn’t validate whether the bucket has
been correctly configured as a website or not.

	
get_xml_acl(key_name='', headers=None, version_id=None)

	

	
initiate_multipart_upload(key_name, headers=None, reduced_redundancy=False, metadata=None, encrypt_key=False)

	Start a multipart upload operation.

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key that will ultimately result from
this multipart upload operation. This will be exactly
as the key appears in the bucket after the upload
process has been completed.

	headers (dict) – Additional HTTP headers to send and store with the
resulting key in S3.

	reduced_redundancy (boolean) – In multipart uploads, the storage class is
specified when initiating the upload,
not when uploading individual parts. So
if you want the resulting key to use the
reduced redundancy storage class set this
flag when you initiate the upload.

	metadata (dict) – Any metadata that you would like to set on the key
that results from the multipart upload.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	
list(prefix='', delimiter='', marker='', headers=None)

	List key objects within a bucket. This returns an instance of an
BucketListResultSet that automatically handles all of the result
paging, etc. from S3. You just need to keep iterating until
there are no more results.

Called with no arguments, this will return an iterator object across
all keys within the bucket.

The Key objects returned by the iterator are obtained by parsing
the results of a GET on the bucket, also known as the List Objects
request. The XML returned by this request contains only a subset
of the information about each key. Certain metadata fields such
as Content-Type and user metadata are not available in the XML.
Therefore, if you want these additional metadata fields you will
have to do a HEAD request on the Key in the bucket.

	Parameters:	
	prefix (string [https://docs.python.org/2/library/string.html#module-string]) – allows you to limit the listing to a particular
prefix. For example, if you call the method with
prefix=’/foo/’ then the iterator will only cycle
through the keys that begin with the string ‘/foo/’.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string]) – can be used in conjunction with the prefix
to allow you to organize and browse your keys
hierarchically. See:
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/
for more details.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set

	Return type:	boto.s3.bucketlistresultset.BucketListResultSet

	Returns:	an instance of a BucketListResultSet that handles paging, etc

	
list_grants(headers=None)

	

	
list_multipart_uploads(key_marker='', upload_id_marker='', headers=None)

	List multipart upload objects within a bucket. This returns an
instance of an MultiPartUploadListResultSet that automatically
handles all of the result paging, etc. from S3. You just need
to keep iterating until there are no more results.

	Parameters:	marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set

	Return type:	boto.s3.bucketlistresultset.BucketListResultSet

	Returns:	an instance of a BucketListResultSet that handles paging, etc

	
list_versions(prefix='', delimiter='', key_marker='', version_id_marker='', headers=None)

	List version objects within a bucket. This returns an instance of an
VersionedBucketListResultSet that automatically handles all of the result
paging, etc. from S3. You just need to keep iterating until
there are no more results.
Called with no arguments, this will return an iterator object across
all keys within the bucket.

	Parameters:	
	prefix (string [https://docs.python.org/2/library/string.html#module-string]) – allows you to limit the listing to a particular
prefix. For example, if you call the method with
prefix=’/foo/’ then the iterator will only cycle
through the keys that begin with the string ‘/foo/’.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string]) – can be used in conjunction with the prefix
to allow you to organize and browse your keys
hierarchically. See:
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/
for more details.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set

	Return type:	boto.s3.bucketlistresultset.BucketListResultSet

	Returns:	an instance of a BucketListResultSet that handles paging, etc

	
lookup(key_name, headers=None)

	Deprecated: Please use get_key method.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key to retrieve

	Return type:	boto.s3.key.Key

	Returns:	A Key object from this bucket.

	
make_public(recursive=False, headers=None)

	

	
new_key(key_name=None)

	Creates a new key

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key to create

	Return type:	boto.s3.key.Key or subclass

	Returns:	An instance of the newly created key object

	
set_acl(acl_or_str, key_name='', headers=None, version_id=None)

	

	
set_as_logging_target(headers=None)

	

	
set_canned_acl(acl_str, key_name='', headers=None, version_id=None)

	

	
set_key_class(key_class)

	Set the Key class associated with this bucket. By default, this
would be the boto.s3.key.Key class but if you want to subclass that
for some reason this allows you to associate your new class with a
bucket so that when you call bucket.new_key() or when you get a listing
of keys in the bucket you will get an instances of your key class
rather than the default.

	Parameters:	key_class (class) – A subclass of Key that can be more specific

	
set_policy(policy, headers=None)

	Add or replace the JSON policy associated with the bucket.

	Parameters:	policy (str [https://docs.python.org/2/library/functions.html#str]) – The JSON policy as a string.

	
set_request_payment(payer='BucketOwner', headers=None)

	

	
set_subresource(subresource, value, key_name='', headers=None, version_id=None)

	Set a subresource for a bucket or key.

	Parameters:	
	subresource (string [https://docs.python.org/2/library/string.html#module-string]) – The subresource to set.

	value (string [https://docs.python.org/2/library/string.html#module-string]) – The value of the subresource.

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The key to operate on, or None to operate on the
bucket.

	headers (dict) – Additional HTTP headers to include in the request.

	src_version_id (string [https://docs.python.org/2/library/string.html#module-string]) – Optional. The version id of the key to operate
on. If not specified, operate on the newest
version.

	
set_xml_acl(acl_str, key_name='', headers=None, version_id=None, query_args='acl')

	

	
startElement(name, attrs, connection)

	

	
class boto.s3.bucket.S3WebsiteEndpointTranslate

	
	
trans_region = defaultdict(<function <lambda>>, {'ap-northeast-1': 's3-website-ap-northeast-1', 'sa-east-1': 's3-website-sa-east-1', 'ap-southeast-1': 's3-website-ap-southeast-1', 'us-west-2': 's3-website-us-west-2', 'us-west-1': 's3-website-us-west-1', 'eu-west-1': 's3-website-eu-west-1'})

	

	
classmethod translate_region(reg)

	

boto.s3.bucketlistresultset

	
class boto.s3.bucketlistresultset.BucketListResultSet(bucket=None, prefix='', delimiter='', marker='', headers=None)

	A resultset for listing keys within a bucket. Uses the bucket_lister
generator function and implements the iterator interface. This
transparently handles the results paging from S3 so even if you have
many thousands of keys within the bucket you can iterate over all
keys in a reasonably efficient manner.

	
class boto.s3.bucketlistresultset.MultiPartUploadListResultSet(bucket=None, key_marker='', upload_id_marker='', headers=None)

	A resultset for listing multipart uploads within a bucket.
Uses the multipart_upload_lister generator function and
implements the iterator interface. This
transparently handles the results paging from S3 so even if you have
many thousands of uploads within the bucket you can iterate over all
keys in a reasonably efficient manner.

	
class boto.s3.bucketlistresultset.VersionedBucketListResultSet(bucket=None, prefix='', delimiter='', key_marker='', version_id_marker='', headers=None)

	A resultset for listing versions within a bucket. Uses the bucket_lister
generator function and implements the iterator interface. This
transparently handles the results paging from S3 so even if you have
many thousands of keys within the bucket you can iterate over all
keys in a reasonably efficient manner.

	
boto.s3.bucketlistresultset.bucket_lister(bucket, prefix='', delimiter='', marker='', headers=None)

	A generator function for listing keys in a bucket.

	
boto.s3.bucketlistresultset.multipart_upload_lister(bucket, key_marker='', upload_id_marker='', headers=None)

	A generator function for listing multipart uploads in a bucket.

	
boto.s3.bucketlistresultset.versioned_bucket_lister(bucket, prefix='', delimiter='', key_marker='', version_id_marker='', headers=None)

	A generator function for listing versions in a bucket.

boto.s3.connection

	
class boto.s3.connection.Location

	
	
APNortheast = 'ap-northeast-1'

	

	
APSoutheast = 'ap-southeast-1'

	

	
DEFAULT = ''

	

	
EU = 'EU'

	

	
SAEast = 'sa-east-1'

	

	
USWest = 'us-west-1'

	

	
class boto.s3.connection.OrdinaryCallingFormat

	
	
build_path_base(bucket, key='')

	

	
get_bucket_server(server, bucket)

	

	
class boto.s3.connection.ProtocolIndependentOrdinaryCallingFormat

	
	
build_url_base(connection, protocol, server, bucket, key='')

	

	
class boto.s3.connection.S3Connection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host='s3.amazonaws.com', debug=0, https_connection_factory=None, calling_format=<boto.s3.connection.SubdomainCallingFormat object>, path='/', provider='aws', bucket_class=<class 'boto.s3.bucket.Bucket'>, security_token=None, suppress_consec_slashes=True, anon=False)

	
	
DefaultHost = 's3.amazonaws.com'

	

	
QueryString = 'Signature=%s&Expires=%d&AWSAccessKeyId=%s'

	

	
build_post_form_args(bucket_name, key, expires_in=6000, acl=None, success_action_redirect=None, max_content_length=None, http_method='http', fields=None, conditions=None)

	Taken from the AWS book Python examples and modified for use with boto
This only returns the arguments required for the post form, not the
actual form. This does not return the file input field which also
needs to be added

	Parameters:	
	bucket_name (string [https://docs.python.org/2/library/string.html#module-string]) – Bucket to submit to

	key (string [https://docs.python.org/2/library/string.html#module-string]) – Key name, optionally add ${filename} to the end to
attach the submitted filename

	expires_in (integer) – Time (in seconds) before this expires, defaults
to 6000

	acl (boto.s3.acl.ACL) – ACL rule to use, if any

	success_action_redirect (string [https://docs.python.org/2/library/string.html#module-string]) – URL to redirect to on success

	max_content_length (integer) – Maximum size for this file

	http_method (string [https://docs.python.org/2/library/string.html#module-string]) – HTTP Method to use, “http” or “https”

	Return type:	dict

	Returns:	A dictionary containing field names/values as well as
a url to POST to

{
 "action": action_url_to_post_to,
 "fields": [
 {
 "name": field_name,
 "value": field_value
 },
 {
 "name": field_name2,
 "value": field_value2
 }
]
}

	
build_post_policy(expiration_time, conditions)

	Taken from the AWS book Python examples and modified for use with boto

	
create_bucket(bucket_name, headers=None, location='', policy=None)

	Creates a new located bucket. By default it’s in the USA. You can pass
Location.EU to create an European bucket.

	Parameters:	
	bucket_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new bucket

	headers (dict) – Additional headers to pass along with the request to AWS.

	location (boto.s3.connection.Location) – The location of the new bucket

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the
new key in S3.

	
delete_bucket(bucket, headers=None)

	

	
generate_url(expires_in, method, bucket='', key='', headers=None, query_auth=True, force_http=False, response_headers=None, expires_in_absolute=False)

	

	
get_all_buckets(headers=None)

	

	
get_bucket(bucket_name, validate=True, headers=None)

	

	
get_canonical_user_id(headers=None)

	Convenience method that returns the “CanonicalUserID” of the
user who’s credentials are associated with the connection.
The only way to get this value is to do a GET request on the
service which returns all buckets associated with the account.
As part of that response, the canonical userid is returned.
This method simply does all of that and then returns just the
user id.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	A string containing the canonical user id.

	
lookup(bucket_name, validate=True, headers=None)

	

	
make_request(method, bucket='', key='', headers=None, data='', query_args=None, sender=None, override_num_retries=None)

	

	
set_bucket_class(bucket_class)

	Set the Bucket class associated with this bucket. By default, this
would be the boto.s3.key.Bucket class but if you want to subclass that
for some reason this allows you to associate your new class.

	Parameters:	bucket_class (class) – A subclass of Bucket that can be more specific

	
class boto.s3.connection.SubdomainCallingFormat

	
	
get_bucket_server(*args, **kwargs)

	

	
class boto.s3.connection.VHostCallingFormat

	
	
get_bucket_server(*args, **kwargs)

	

	
boto.s3.connection.assert_case_insensitive(f)

	

	
boto.s3.connection.check_lowercase_bucketname(n)

	Bucket names must not contain uppercase characters. We check for
this by appending a lowercase character and testing with islower().
Note this also covers cases like numeric bucket names with dashes.

>>> check_lowercase_bucketname("Aaaa")
Traceback (most recent call last):
...
BotoClientError: S3Error: Bucket names cannot contain upper-case
characters when using either the sub-domain or virtual hosting calling
format.

>>> check_lowercase_bucketname("1234-5678-9123")
True
>>> check_lowercase_bucketname("abcdefg1234")
True

boto.s3.key

	
class boto.s3.key.Key(bucket=None, name=None)

	
	
BufferSize = 8192

	

	
DefaultContentType = 'application/octet-stream'

	

	
add_email_grant(permission, email_address, headers=None)

	Convenience method that provides a quick way to add an email grant
to a key. This method retrieves the current ACL, creates a new
grant based on the parameters passed in, adds that grant to the ACL
and then PUT’s the new ACL back to S3.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ, WRITE, READ_ACP, WRITE_ACP, FULL_CONTROL).

	email_address (string [https://docs.python.org/2/library/string.html#module-string]) – The email address associated with the AWS
account your are granting the permission to.

	recursive (boolean) – A boolean value to controls whether the command
will apply the grant to all keys within the bucket
or not. The default value is False. By passing a
True value, the call will iterate through all keys
in the bucket and apply the same grant to each key.
CAUTION: If you have a lot of keys, this could take
a long time!

	
add_user_grant(permission, user_id, headers=None, display_name=None)

	Convenience method that provides a quick way to add a canonical
user grant to a key. This method retrieves the current ACL,
creates a new grant based on the parameters passed in, adds that
grant to the ACL and then PUT’s the new ACL back to S3.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ, WRITE, READ_ACP, WRITE_ACP, FULL_CONTROL).

	user_id (string [https://docs.python.org/2/library/string.html#module-string]) – The canonical user id associated with the AWS
account your are granting the permission to.

	display_name (string [https://docs.python.org/2/library/string.html#module-string]) – An option string containing the user’s
Display Name. Only required on Walrus.

	
change_storage_class(new_storage_class, dst_bucket=None)

	Change the storage class of an existing key.
Depending on whether a different destination bucket is supplied
or not, this will either move the item within the bucket, preserving
all metadata and ACL info bucket changing the storage class or it
will copy the item to the provided destination bucket, also
preserving metadata and ACL info.

	Parameters:	
	new_storage_class (string [https://docs.python.org/2/library/string.html#module-string]) – The new storage class for the Key.
Possible values are:
* STANDARD
* REDUCED_REDUNDANCY

	dst_bucket (string [https://docs.python.org/2/library/string.html#module-string]) – The name of a destination bucket. If not
provided the current bucket of the key
will be used.

	
close()

	

	
closed = False

	

	
compute_md5(fp, size=None)

	

	Parameters:	
	fp (file) – File pointer to the file to MD5 hash. The file pointer
will be reset to the same position before the
method returns.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where the file is being
split inplace into different parts. Less bytes may
be available.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

	Returns:	A tuple containing the hex digest version of the MD5 hash
as the first element and the base64 encoded version of the
plain digest as the second element.

	
copy(dst_bucket, dst_key, metadata=None, reduced_redundancy=False, preserve_acl=False, encrypt_key=False)

	Copy this Key to another bucket.

	Parameters:	
	dst_bucket (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the destination bucket

	dst_key (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the destination key

	metadata (dict) – Metadata to be associated with new key.
If metadata is supplied, it will replace the
metadata of the source key being copied.
If no metadata is supplied, the source key’s
metadata will be copied to the new key.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will force the storage
class of the new Key to be
REDUCED_REDUNDANCY regardless of the
storage class of the key being copied.
The Reduced Redundancy Storage (RRS)
feature of S3, provides lower
redundancy at lower storage cost.

	preserve_acl (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the ACL from the source key
will be copied to the destination
key. If False, the destination key
will have the default ACL.
Note that preserving the ACL in the
new key object will require two
additional API calls to S3, one to
retrieve the current ACL and one to
set that ACL on the new object. If
you don’t care about the ACL, a value
of False will be significantly more
efficient.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	Return type:	boto.s3.key.Key or subclass

	Returns:	An instance of the newly created key object

	
delete()

	Delete this key from S3

	
endElement(name, value, connection)

	

	
exists()

	Returns True if the key exists

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the key exists on S3

	
generate_url(expires_in, method='GET', headers=None, query_auth=True, force_http=False, response_headers=None, expires_in_absolute=False)

	Generate a URL to access this key.

	Parameters:	
	expires_in (int [https://docs.python.org/2/library/functions.html#int]) – How long the url is valid for, in seconds

	method (string [https://docs.python.org/2/library/string.html#module-string]) – The method to use for retrieving the file
(default is GET)

	headers (dict) – Any headers to pass along in the request

	query_auth (bool [https://docs.python.org/2/library/functions.html#bool]) –

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The URL to access the key

	
get_acl(headers=None)

	

	
get_contents_as_string(headers=None, cb=None, num_cb=10, torrent=False, version_id=None, response_headers=None)

	Retrieve an object from S3 using the name of the Key object as the
key in S3. Return the contents of the object as a string.
See get_contents_to_file method for details about the
parameters.

	Parameters:	
	headers (dict) – Any additional headers to send in the request

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, returns the contents of a torrent file
as a string.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The contents of the file as a string

	
get_contents_to_file(fp, headers=None, cb=None, num_cb=10, torrent=False, version_id=None, res_download_handler=None, response_headers=None)

	Retrieve an object from S3 using the name of the Key object as the
key in S3. Write the contents of the object to the file pointed
to by ‘fp’.

	Parameters:	
	fp (File -like object) –

	headers (dict) – additional HTTP headers that will be sent with
the GET request.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, returns the contents of a torrent
file as a string.

	res_download_handler – If provided, this handler will
perform the download.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	
get_contents_to_filename(filename, headers=None, cb=None, num_cb=10, torrent=False, version_id=None, res_download_handler=None, response_headers=None)

	Retrieve an object from S3 using the name of the Key object as the
key in S3. Store contents of the object to a file named by ‘filename’.
See get_contents_to_file method for details about the
parameters.

	Parameters:	
	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The filename of where to put the file contents

	headers (dict) – Any additional headers to send in the request

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, returns the contents of a torrent file
as a string.

	res_download_handler – If provided, this handler will
perform the download.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	
get_file(fp, headers=None, cb=None, num_cb=10, torrent=False, version_id=None, override_num_retries=None, response_headers=None)

	Retrieves a file from an S3 Key

	Parameters:	
	fp (file) – File pointer to put the data into

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – Flag for whether to get a torrent for the file

	override_num_retries (int [https://docs.python.org/2/library/functions.html#int]) – If not None will override configured
num_retries parameter for underlying GET.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	Param:	headers to send when retrieving the files

	
get_md5_from_hexdigest(md5_hexdigest)

	A utility function to create the 2-tuple (md5hexdigest, base64md5)
from just having a precalculated md5_hexdigest.

	
get_metadata(name)

	

	
get_torrent_file(fp, headers=None, cb=None, num_cb=10)

	Get a torrent file (see to get_file)

	Parameters:	
	fp (file) – The file pointer of where to put the torrent

	headers (dict) – Headers to be passed

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	
get_xml_acl(headers=None)

	

	
handle_encryption_headers(resp)

	

	
handle_version_headers(resp, force=False)

	

	
make_public(headers=None)

	

	
next()

	By providing a next method, the key object supports use as an iterator.
For example, you can now say:

	for bytes in key:

	write bytes to a file or whatever

All of the HTTP connection stuff is handled for you.

	
open(mode='r', headers=None, query_args=None, override_num_retries=None)

	

	
open_read(headers=None, query_args='', override_num_retries=None, response_headers=None)

	Open this key for reading

	Parameters:	
	headers (dict) – Headers to pass in the web request

	query_args (string [https://docs.python.org/2/library/string.html#module-string]) – Arguments to pass in the query string (ie, ‘torrent’)

	override_num_retries (int [https://docs.python.org/2/library/functions.html#int]) – If not None will override configured
num_retries parameter for underlying GET.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	
open_write(headers=None, override_num_retries=None)

	Open this key for writing.
Not yet implemented

	Parameters:	
	headers (dict) – Headers to pass in the write request

	override_num_retries (int [https://docs.python.org/2/library/functions.html#int]) – If not None will override configured
num_retries parameter for underlying PUT.

	
provider

	

	
read(size=0)

	

	
send_file(fp, headers=None, cb=None, num_cb=10, query_args=None, chunked_transfer=False, size=None)

	Upload a file to a key into a bucket on S3.

	Parameters:	
	fp (file) – The file pointer to upload. The file pointer must point
point at the offset from which you wish to upload.
ie. if uploading the full file, it should point at the
start of the file. Normally when a file is opened for
reading, the fp will point at the first byte. See the
bytes parameter below for more info.

	headers (dict) – The headers to pass along with the PUT request

	cb (function) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb (int [https://docs.python.org/2/library/functions.html#int]) – (optional) If a callback is specified with the cb
parameter this parameter determines the granularity
of the callback by defining the maximum number of
times the callback will be called during the file
transfer. Providing a negative integer will cause
your callback to be called with each buffer read.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where you are splitting the
file up into different ranges to be uploaded. If not
specified, the default behaviour is to read all bytes
from the file pointer. Less bytes may be available.

	
set_acl(acl_str, headers=None)

	

	
set_canned_acl(acl_str, headers=None)

	

	
set_contents_from_file(fp, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, reduced_redundancy=False, query_args=None, encrypt_key=False, size=None)

	Store an object in S3 using the name of the Key object as the
key in S3 and the contents of the file pointed to by ‘fp’ as the
contents.

	Parameters:	
	fp (file) – the file whose contents to upload

	headers (dict) – Additional HTTP headers that will be sent with
the PUT request.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If this parameter is False, the method
will first check to see if an object exists in the
bucket with the same key. If it does, it won’t
overwrite it. The default value is True which will
overwrite the object.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with the cb
parameter this parameter determines the granularity
of the callback by defining the maximum number of
times the callback will be called during the
file transfer.

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the
new key in S3.

	md5 (A tuple containing the hexdigest version of the MD5
checksum of the file as the first element and the
Base64-encoded version of the plain checksum as the
second element. This is the same format returned by
the compute_md5 method.) – If you need to compute the MD5 for any reason prior
to upload, it’s silly to have to do it twice so this
param, if present, will be used as the MD5 values of
the file. Otherwise, the checksum will be computed.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will set the storage
class of the new Key to be
REDUCED_REDUNDANCY. The Reduced Redundancy
Storage (RRS) feature of S3, provides lower
redundancy at lower storage cost.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where you are splitting the
file up into different ranges to be uploaded. If not
specified, the default behaviour is to read all bytes
from the file pointer. Less bytes may be available.

	
set_contents_from_filename(filename, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, reduced_redundancy=False, encrypt_key=False)

	Store an object in S3 using the name of the Key object as the
key in S3 and the contents of the file named by ‘filename’.
See set_contents_from_file method for details about the
parameters.

	Parameters:	
	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the file that you want to put onto S3

	headers (dict) – Additional headers to pass along with the
request to AWS.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, replaces the contents of the file
if it already exists.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the
new key in S3.

	md5 (A tuple containing the hexdigest version of the MD5
checksum of the file as the first element and the
Base64-encoded version of the plain checksum as the
second element. This is the same format returned by
the compute_md5 method.) – If you need to compute the MD5 for any reason prior
to upload, it’s silly to have to do it twice so this
param, if present, will be used as the MD5 values
of the file. Otherwise, the checksum will be computed.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will set the storage
class of the new Key to be
REDUCED_REDUNDANCY. The Reduced Redundancy
Storage (RRS) feature of S3, provides lower
redundancy at lower storage cost.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	
set_contents_from_stream(fp, headers=None, replace=True, cb=None, num_cb=10, policy=None, reduced_redundancy=False, query_args=None, size=None)

	Store an object using the name of the Key object as the key in
cloud and the contents of the data stream pointed to by ‘fp’ as
the contents.
The stream object is not seekable and total size is not known.
This has the implication that we can’t specify the Content-Size and
Content-MD5 in the header. So for huge uploads, the delay in calculating
MD5 is avoided but with a penalty of inability to verify the integrity
of the uploaded data.

	Parameters:	
	fp (file) – the file whose contents are to be uploaded

	headers (dict) – additional HTTP headers to be sent with the PUT request.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If this parameter is False, the method will first check
to see if an object exists in the bucket with the same key. If it
does, it won’t overwrite it. The default value is True which will
overwrite the object.

	cb (function) – a callback function that will be called to report
progress on the upload. The callback should accept two integer
parameters, the first representing the number of bytes that have
been successfully transmitted to GS and the second representing the
total number of bytes that need to be transmitted.

	num_cb (int [https://docs.python.org/2/library/functions.html#int]) – (optional) If a callback is specified with the cb
parameter, this parameter determines the granularity of the callback
by defining the maximum number of times the callback will be called
during the file transfer.

	policy (boto.gs.acl.CannedACLStrings) – A canned ACL policy that will be applied to the new key
in GS.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will set the storage
class of the new Key to be
REDUCED_REDUNDANCY. The Reduced Redundancy
Storage (RRS) feature of S3, provides lower
redundancy at lower storage cost.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where you are splitting the
file up into different ranges to be uploaded. If not
specified, the default behaviour is to read all bytes
from the file pointer. Less bytes may be available.

	
set_contents_from_string(s, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, reduced_redundancy=False, encrypt_key=False)

	Store an object in S3 using the name of the Key object as the
key in S3 and the string ‘s’ as the contents.
See set_contents_from_file method for details about the
parameters.

	Parameters:	
	headers (dict) – Additional headers to pass along with the
request to AWS.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, replaces the contents of the file if
it already exists.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the
new key in S3.

	md5 (A tuple containing the hexdigest version of the MD5
checksum of the file as the first element and the
Base64-encoded version of the plain checksum as the
second element. This is the same format returned by
the compute_md5 method.) – If you need to compute the MD5 for any reason prior
to upload, it’s silly to have to do it twice so this
param, if present, will be used as the MD5 values
of the file. Otherwise, the checksum will be computed.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will set the storage
class of the new Key to be
REDUCED_REDUNDANCY. The Reduced Redundancy
Storage (RRS) feature of S3, provides lower
redundancy at lower storage cost.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	
set_metadata(name, value)

	

	
set_xml_acl(acl_str, headers=None)

	

	
startElement(name, attrs, connection)

	

	
update_metadata(d)

	

boto.s3.prefix

	
class boto.s3.prefix.Prefix(bucket=None, name=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.s3.user

	
class boto.s3.user.User(parent=None, id='', display_name='')

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml(element_name='Owner')

	

boto.s3.multipart

	
class boto.s3.multipart.CompleteMultiPartUpload(bucket=None)

	Represents a completed MultiPart Upload. Contains the
following useful attributes:

	location - The URI of the completed upload

	
	bucket_name - The name of the bucket in which the upload

	is contained

	key_name - The name of the new, completed key

	etag - The MD5 hash of the completed, combined upload

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.s3.multipart.MultiPartUpload(bucket=None)

	Represents a MultiPart Upload operation.

	
cancel_upload()

	Cancels a MultiPart Upload operation. The storage consumed by
any previously uploaded parts will be freed. However, if any
part uploads are currently in progress, those part uploads
might or might not succeed. As a result, it might be necessary
to abort a given multipart upload multiple times in order to
completely free all storage consumed by all parts.

	
complete_upload()

	Complete the MultiPart Upload operation. This method should
be called when all parts of the file have been successfully
uploaded to S3.

	Return type:	boto.s3.multipart.CompletedMultiPartUpload

	Returns:	An object representing the completed upload.

	
copy_part_from_key(src_bucket_name, src_key_name, part_num, start=None, end=None)

	Copy another part of this MultiPart Upload.

	Parameters:	
	src_bucket_name (string [https://docs.python.org/2/library/string.html#module-string]) – Name of the bucket containing the source key

	src_key_name (string [https://docs.python.org/2/library/string.html#module-string]) – Name of the source key

	part_num (int [https://docs.python.org/2/library/functions.html#int]) – The number of this part.

	start (int [https://docs.python.org/2/library/functions.html#int]) – Zero-based byte offset to start copying from

	end (int [https://docs.python.org/2/library/functions.html#int]) – Zero-based byte offset to copy to

	
endElement(name, value, connection)

	

	
get_all_parts(max_parts=None, part_number_marker=None)

	Return the uploaded parts of this MultiPart Upload. This is
a lower-level method that requires you to manually page through
results. To simplify this process, you can just use the
object itself as an iterator and it will automatically handle
all of the paging with S3.

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
upload_part_from_file(fp, part_num, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, size=None)

	Upload another part of this MultiPart Upload.

	Parameters:	
	fp (file) – The file object you want to upload.

	part_num (int [https://docs.python.org/2/library/functions.html#int]) – The number of this part.

The other parameters are exactly as defined for the
boto.s3.key.Key set_contents_from_file method.

	
class boto.s3.multipart.Part(bucket=None)

	Represents a single part in a MultiPart upload.
Attributes include:

	part_number - The integer part number

	last_modified - The last modified date of this part

	etag - The MD5 hash of this part

	size - The size, in bytes, of this part

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
boto.s3.multipart.part_lister(mpupload, part_number_marker=None)

	A generator function for listing parts of a multipart upload.

boto.s3.resumable_download_handler

	
class boto.s3.resumable_download_handler.ByteTranslatingCallbackHandler(proxied_cb, download_start_point)

	Proxy class that translates progress callbacks made by
boto.s3.Key.get_file(), taking into account that we’re resuming
a download.

	
call(total_bytes_uploaded, total_size)

	

	
class boto.s3.resumable_download_handler.ResumableDownloadHandler(tracker_file_name=None, num_retries=None)

	Handler for resumable downloads.

Constructor. Instantiate once for each downloaded file.

	Parameters:	
	tracker_file_name (string [https://docs.python.org/2/library/string.html#module-string]) – optional file name to save tracking info
about this download. If supplied and the current process fails
the download, it can be retried in a new process. If called
with an existing file containing an unexpired timestamp,
we’ll resume the transfer for this file; else we’ll start a
new resumable download.

	num_retries (int [https://docs.python.org/2/library/functions.html#int]) – the number of times we’ll re-try a resumable
download making no progress. (Count resets every time we get
progress, so download can span many more than this number of
retries.)

	
ETAG_REGEX = '([a-z0-9]{32})\n'

	

	
RETRYABLE_EXCEPTIONS = (<class 'httplib.HTTPException'>, <type 'exceptions.IOError'>, <class 'socket.error'>, <class 'socket.gaierror'>)

	

	
get_file(key, fp, headers, cb=None, num_cb=10, torrent=False, version_id=None)

	Retrieves a file from a Key
:type key: boto.s3.key.Key or subclass
:param key: The Key object from which upload is to be downloaded

	Parameters:	
	fp (file) – File pointer into which data should be downloaded

	cb (function) – (optional) a callback function that will be called to report
progress on the download. The callback should accept two integer
parameters, the first representing the number of bytes that have
been successfully transmitted from the storage service and
the second representing the total number of bytes that need
to be transmitted.

	num_cb (int [https://docs.python.org/2/library/functions.html#int]) – (optional) If a callback is specified with the cb
parameter this parameter determines the granularity of the callback
by defining the maximum number of times the callback will be
called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – Flag for whether to get a torrent for the file

	version_id (string [https://docs.python.org/2/library/string.html#module-string]) – The version ID (optional)

	Param:	headers to send when retrieving the files

	Raises ResumableDownloadException if a problem occurs during

	the transfer.

	
boto.s3.resumable_download_handler.get_cur_file_size(fp, position_to_eof=False)

	Returns size of file, optionally leaving fp positioned at EOF.

boto.s3.deletemarker

	
class boto.s3.deletemarker.DeleteMarker(bucket=None, name=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

mturk

boto.mturk

boto.mturk.connection

	
class boto.mturk.connection.Assignment(connection)

	Class to extract an Assignment structure from a response (used in
ResultSet)

Will have attributes named as per the Developer Guide,
e.g. AssignmentId, WorkerId, HITId, Answer, etc

	
endElement(name, value, connection)

	

	
class boto.mturk.connection.BaseAutoResultElement(connection)

	Base class to automatically add attributes when parsing XML

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.mturk.connection.HIT(connection)

	Class to extract a HIT structure from a response (used in ResultSet)

Will have attributes named as per the Developer Guide,
e.g. HITId, HITTypeId, CreationTime

	
expired

	Has this HIT expired yet?

	
class boto.mturk.connection.MTurkConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host=None, debug=0, https_connection_factory=None)

	
	
APIVersion = '2008-08-02'

	

	
approve_assignment(assignment_id, feedback=None)

	

	
assign_qualification(qualification_type_id, worker_id, value=1, send_notification=True)

	

	
block_worker(worker_id, reason)

	Block a worker from working on my tasks.

	
change_hit_type_of_hit(hit_id, hit_type)

	Change the HIT type of an existing HIT. Note that the reward associated
with the new HIT type must match the reward of the current HIT type in
order for the operation to be valid.

	
create_hit(hit_type=None, question=None, lifetime=datetime.timedelta(7), max_assignments=1, title=None, description=None, keywords=None, reward=None, duration=datetime.timedelta(7), approval_delay=None, annotation=None, questions=None, qualifications=None, response_groups=None)

	Creates a new HIT.
Returns a ResultSet
See: http://docs.amazonwebservices.com/AWSMechanicalTurkRequester/2006-10-31/ApiReference_CreateHITOperation.html

	
create_qualification_type(name, description, status, keywords=None, retry_delay=None, test=None, answer_key=None, answer_key_xml=None, test_duration=None, auto_granted=False, auto_granted_value=1)

	Create a new Qualification Type.

	name: This will be visible to workers and must be unique for a

	given requester.

description: description shown to workers. Max 2000 characters.

status: ‘Active’ or ‘Inactive’

	keywords: list of keyword strings or comma separated string.

	Max length of 1000 characters when concatenated with commas.

	retry_delay: number of seconds after requesting a

	qualification the worker must wait before they can ask again.
If not specified, workers can only request this qualification
once.

test: a QuestionForm

	answer_key: an XML string of your answer key, for automatically

	scored qualification tests.
(Consider implementing an AnswerKey class for this to support.)

test_duration: the number of seconds a worker has to complete the test.

	auto_granted: if True, requests for the Qualification are granted

	immediately. Can’t coexist with a test.

auto_granted_value: auto_granted qualifications are given this value.

	
disable_hit(hit_id, response_groups=None)

	Remove a HIT from the Mechanical Turk marketplace, approves all
submitted assignments that have not already been approved or rejected,
and disposes of the HIT and all assignment data.

Assignments for the HIT that have already been submitted, but not yet
approved or rejected, will be automatically approved. Assignments in
progress at the time of the call to DisableHIT will be approved once
the assignments are submitted. You will be charged for approval of
these assignments. DisableHIT completely disposes of the HIT and
all submitted assignment data. Assignment results data cannot be
retrieved for a HIT that has been disposed.

It is not possible to re-enable a HIT once it has been disabled.
To make the work from a disabled HIT available again, create a new HIT.

	
dispose_hit(hit_id)

	Dispose of a HIT that is no longer needed.

Only HITs in the “reviewable” state, with all submitted
assignments approved or rejected, can be disposed. A Requester
can call GetReviewableHITs to determine which HITs are
reviewable, then call GetAssignmentsForHIT to retrieve the
assignments. Disposing of a HIT removes the HIT from the
results of a call to GetReviewableHITs.

	
dispose_qualification_type(qualification_type_id)

	TODO: Document.

	
static duration_as_seconds(duration)

	

	
expire_hit(hit_id)

	Expire a HIT that is no longer needed.

The effect is identical to the HIT expiring on its own. The
HIT no longer appears on the Mechanical Turk web site, and no
new Workers are allowed to accept the HIT. Workers who have
accepted the HIT prior to expiration are allowed to complete
it or return it, or allow the assignment duration to elapse
(abandon the HIT). Once all remaining assignments have been
submitted, the expired HIT becomes”reviewable”, and will be
returned by a call to GetReviewableHITs.

	
extend_hit(hit_id, assignments_increment=None, expiration_increment=None)

	Increase the maximum number of assignments, or extend the
expiration date, of an existing HIT.

NOTE: If a HIT has a status of Reviewable and the HIT is
extended to make it Available, the HIT will not be returned by
GetReviewableHITs, and its submitted assignments will not be
returned by GetAssignmentsForHIT, until the HIT is Reviewable
again. Assignment auto-approval will still happen on its
original schedule, even if the HIT has been extended. Be sure
to retrieve and approve (or reject) submitted assignments
before extending the HIT, if so desired.

	
get_account_balance()

	

	
get_all_hits()

	Return all of a Requester’s HITs

Despite what search_hits says, it does not return all hits, but
instead returns a page of hits. This method will pull the hits
from the server 100 at a time, but will yield the results
iteratively, so subsequent requests are made on demand.

	
get_assignments(hit_id, status=None, sort_by='SubmitTime', sort_direction='Ascending', page_size=10, page_number=1, response_groups=None)

	Retrieves completed assignments for a HIT.
Use this operation to retrieve the results for a HIT.

The returned ResultSet will have the following attributes:

	NumResults

	The number of assignments on the page in the filtered results
list, equivalent to the number of assignments being returned
by this call.
A non-negative integer

	PageNumber

	The number of the page in the filtered results list being
returned.
A positive integer

	TotalNumResults

	The total number of HITs in the filtered results list based
on this call.
A non-negative integer

The ResultSet will contain zero or more Assignment objects

	
get_help(about, help_type='Operation')

	Return information about the Mechanical Turk Service
operations and response group NOTE - this is basically useless
as it just returns the URL of the documentation

help_type: either ‘Operation’ or ‘ResponseGroup’

	
get_hit(hit_id, response_groups=None)

	

	
static get_keywords_as_string(keywords)

	Returns a comma+space-separated string of keywords from either
a list or a string

	
static get_price_as_price(reward)

	Returns a Price data structure from either a float or a Price

	
get_qualification_requests(qualification_type_id, sort_by='Expiration', sort_direction='Ascending', page_size=10, page_number=1)

	TODO: Document.

	
get_qualification_score(qualification_type_id, worker_id)

	TODO: Document.

	
get_qualification_type(qualification_type_id)

	

	
get_qualifications_for_qualification_type(qualification_type_id)

	

	
get_reviewable_hits(hit_type=None, status='Reviewable', sort_by='Expiration', sort_direction='Ascending', page_size=10, page_number=1)

	Retrieve the HITs that have a status of Reviewable, or HITs that
have a status of Reviewing, and that belong to the Requester
calling the operation.

	
grant_bonus(worker_id, assignment_id, bonus_price, reason)

	Issues a payment of money from your account to a Worker. To
be eligible for a bonus, the Worker must have submitted
results for one of your HITs, and have had those results
approved or rejected. This payment happens separately from the
reward you pay to the Worker when you approve the Worker’s
assignment. The Bonus must be passed in as an instance of the
Price object.

	
grant_qualification(qualification_request_id, integer_value=1)

	TODO: Document.

	
notify_workers(worker_ids, subject, message_text)

	Send a text message to workers.

	
register_hit_type(title, description, reward, duration, keywords=None, approval_delay=None, qual_req=None)

	Register a new HIT Type
title, description are strings
reward is a Price object
duration can be a timedelta, or an object castable to an int

	
reject_assignment(assignment_id, feedback=None)

	

	
revoke_qualification(subject_id, qualification_type_id, reason=None)

	TODO: Document.

	
search_hits(sort_by='CreationTime', sort_direction='Ascending', page_size=10, page_number=1, response_groups=None)

	Return a page of a Requester’s HITs, on behalf of the Requester.
The operation returns HITs of any status, except for HITs that
have been disposed with the DisposeHIT operation.
Note:
The SearchHITs operation does not accept any search parameters
that filter the results.

	
search_qualification_types(query=None, sort_by='Name', sort_direction='Ascending', page_size=10, page_number=1, must_be_requestable=True, must_be_owned_by_caller=True)

	TODO: Document.

	
set_email_notification(hit_type, email, event_types=None)

	Performs a SetHITTypeNotification operation to set email
notification for a specified HIT type

	
set_rest_notification(hit_type, url, event_types=None)

	Performs a SetHITTypeNotification operation to set REST notification
for a specified HIT type

	
set_reviewing(hit_id, revert=None)

	Update a HIT with a status of Reviewable to have a status of Reviewing,
or reverts a Reviewing HIT back to the Reviewable status.

Only HITs with a status of Reviewable can be updated with a status of
Reviewing. Similarly, only Reviewing HITs can be reverted back to a
status of Reviewable.

	
unblock_worker(worker_id, reason)

	Unblock a worker from working on my tasks.

	
update_qualification_score(qualification_type_id, worker_id, value)

	TODO: Document.

	
update_qualification_type(qualification_type_id, description=None, status=None, retry_delay=None, test=None, answer_key=None, test_duration=None, auto_granted=None, auto_granted_value=None)

	

	
exception boto.mturk.connection.MTurkRequestError(status, reason, body=None)

	Error for MTurk Requests

	
class boto.mturk.connection.Qualification(connection)

	Class to extract an Qualification structure from a response (used in
ResultSet)

Will have attributes named as per the Developer Guide such as
QualificationTypeId, IntegerValue. Does not seem to contain GrantTime.

	
class boto.mturk.connection.QualificationRequest(connection)

	Class to extract an QualificationRequest structure from a response (used in
ResultSet)

Will have attributes named as per the Developer Guide,
e.g. QualificationRequestId, QualificationTypeId, SubjectId, etc

	TODO: Ensure that Test and Answer attribute are treated properly if the

	qualification requires a test. These attributes are XML-encoded.

	
class boto.mturk.connection.QualificationType(connection)

	Class to extract an QualificationType structure from a response (used in
ResultSet)

Will have attributes named as per the Developer Guide,
e.g. QualificationTypeId, CreationTime, Name, etc

	
class boto.mturk.connection.QuestionFormAnswer(connection)

	Class to extract Answers from inside the embedded XML
QuestionFormAnswers element inside the Answer element which is
part of the Assignment structure

A QuestionFormAnswers element contains an Answer element for each
question in the HIT or Qualification test for which the Worker
provided an answer. Each Answer contains a QuestionIdentifier
element whose value corresponds to the QuestionIdentifier of a
Question in the QuestionForm. See the QuestionForm data structure
for more information about questions and answer specifications.

If the question expects a free-text answer, the Answer element
contains a FreeText element. This element contains the Worker’s
answer

NOTE - currently really only supports free-text and selection answers

	
endElement(name, value, connection)

	

boto.mturk.notification

Provides NotificationMessage and Event classes, with utility methods, for
implementations of the Mechanical Turk Notification API.

	
class boto.mturk.notification.Event(d)

	

	
class boto.mturk.notification.NotificationMessage(d)

	Constructor; expects parameter d to be a dict of string parameters from a REST transport notification message

	
EVENT_PATTERN = 'Event\\.(?P<n>\\d+)\\.(?P<param>\\w+)'

	

	
EVENT_RE = <_sre.SRE_Pattern object>

	

	
NOTIFICATION_VERSION = '2006-05-05'

	

	
NOTIFICATION_WSDL = 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurk/2006-05-05/AWSMechanicalTurkRequesterNotification.wsdl'

	

	
OPERATION_NAME = 'Notify'

	

	
SERVICE_NAME = 'AWSMechanicalTurkRequesterNotification'

	

	
verify(secret_key)

	Verifies the authenticity of a notification message.

	TODO: This is doing a form of authentication and

	this functionality should really be merged
with the pluggable authentication mechanism
at some point.

boto.mturk.price

	
class boto.mturk.price.Price(amount=0.0, currency_code='USD')

	
	
endElement(name, value, connection)

	

	
get_as_params(label, ord=1)

	

	
startElement(name, attrs, connection)

	

boto.mturk.qualification

	
class boto.mturk.qualification.AdultRequirement(comparator, integer_value, required_to_preview=False)

	Requires workers to acknowledge that they are over 18 and that they agree to work on potentially offensive content. The value type is boolean, 1 (required), 0 (not required, the default).

	
class boto.mturk.qualification.LocaleRequirement(comparator, locale, required_to_preview=False)

	A Qualification requirement based on the Worker’s location. The Worker’s location is specified by the Worker to Mechanical Turk when the Worker creates his account.

	
get_as_params()

	

	
class boto.mturk.qualification.NumberHitsApprovedRequirement(comparator, integer_value, required_to_preview=False)

	Specifies the total number of HITs submitted by a Worker that have been approved. The value is an integer greater than or equal to 0.

	
class boto.mturk.qualification.PercentAssignmentsAbandonedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has abandoned (allowed the deadline to elapse), over all assignments the Worker has accepted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.PercentAssignmentsApprovedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has submitted that were subsequently approved by the Requester, over all assignments the Worker has submitted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.PercentAssignmentsRejectedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has submitted that were subsequently rejected by the Requester, over all assignments the Worker has submitted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.PercentAssignmentsReturnedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has returned, over all assignments the Worker has accepted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.PercentAssignmentsSubmittedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has submitted, over all assignments the Worker has accepted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.Qualifications(requirements=None)

	
	
add(req)

	

	
get_as_params()

	

	
class boto.mturk.qualification.Requirement(qualification_type_id, comparator, integer_value=None, required_to_preview=False)

	Representation of a single requirement

	
get_as_params()

	

boto.mturk.question

	
class boto.mturk.question.AnswerSpecification(spec)

	
	
get_as_xml()

	

	
template = '<AnswerSpecification>%(spec)s</AnswerSpecification>'

	

	
class boto.mturk.question.Application(width, height, **parameters)

	
	
get_as_xml()

	

	
get_inner_content(content)

	

	
parameter_template = '<Name>%(name)s</Name><Value>%(value)s</Value>'

	

	
template = '<Application><%(class_)s>%(content)s</%(class_)s></Application>'

	

	
class boto.mturk.question.Binary(type, subtype, url, alt_text)

	
	
template = '<Binary><MimeType><Type>%(type)s</Type><SubType>%(subtype)s</SubType></MimeType><DataURL>%(url)s</DataURL><AltText>%(alt_text)s</AltText></Binary>'

	

	
class boto.mturk.question.Constraint

	
	
get_as_xml()

	

	
get_attributes()

	

	
class boto.mturk.question.Constraints

	
	
get_as_xml()

	

	
template = '<Constraints>%(content)s</Constraints>'

	

	
class boto.mturk.question.ExternalQuestion(external_url, frame_height)

	An object for constructing an External Question.

	
get_as_params(label='ExternalQuestion')

	

	
get_as_xml()

	

	
schema_url = 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2006-07-14/ExternalQuestion.xsd'

	

	
template = '<ExternalQuestion xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2006-07-14/ExternalQuestion.xsd"><ExternalURL>%(external_url)s</ExternalURL><FrameHeight>%(frame_height)s</FrameHeight></ExternalQuestion>'

	

	
class boto.mturk.question.FileUploadAnswer(min_bytes, max_bytes)

	
	
get_as_xml()

	

	
template = '<FileUploadAnswer><MinFileSizeInBytes>%(min_bytes)d</MinFileSizeInBytes><MaxFileSizeInBytes>%(max_bytes)d</MaxFileSizeInBytes></FileUploadAnswer>'

	

	
class boto.mturk.question.Flash(url, *args, **kwargs)

	
	
get_inner_content(content)

	

	
class boto.mturk.question.FormattedContent(content)

	
	
schema_url = 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2006-07-14/FormattedContentXHTMLSubset.xsd'

	

	
template = '<FormattedContent><![CDATA[%(content)s]]></FormattedContent>'

	

	
class boto.mturk.question.FreeTextAnswer(default=None, constraints=None, num_lines=None)

	
	
get_as_xml()

	

	
template = '<FreeTextAnswer>%(items)s</FreeTextAnswer>'

	

	
class boto.mturk.question.JavaApplet(path, filename, *args, **kwargs)

	
	
get_inner_content(content)

	

	
class boto.mturk.question.LengthConstraint(min_length=None, max_length=None)

	
	
attribute_names = ('minLength', 'maxLength')

	

	
template = '<Length %(attrs)s />'

	

	
class boto.mturk.question.List

	A bulleted list suitable for OrderedContent or Overview content

	
get_as_xml()

	

	
class boto.mturk.question.NumberOfLinesSuggestion(num_lines=1)

	
	
get_as_xml()

	

	
template = '<NumberOfLinesSuggestion>%(num_lines)s</NumberOfLinesSuggestion>'

	

	
class boto.mturk.question.NumericConstraint(min_value=None, max_value=None)

	
	
attribute_names = ('minValue', 'maxValue')

	

	
template = '<IsNumeric %(attrs)s />'

	

	
class boto.mturk.question.OrderedContent

	
	
append_field(field, value)

	

	
get_as_xml()

	

	
class boto.mturk.question.Overview

	
	
get_as_params(label='Overview')

	

	
get_as_xml()

	

	
template = '<Overview>%(content)s</Overview>'

	

	
class boto.mturk.question.Question(identifier, content, answer_spec, is_required=False, display_name=None)

	
	
get_as_params(label='Question')

	

	
get_as_xml()

	

	
template = '<Question>%(items)s</Question>'

	

	
class boto.mturk.question.QuestionContent

	
	
get_as_xml()

	

	
template = '<QuestionContent>%(content)s</QuestionContent>'

	

	
class boto.mturk.question.QuestionForm

	From the AMT API docs:

The top-most element of the QuestionForm data structure is a
QuestionForm element. This element contains optional Overview
elements and one or more Question elements. There can be any
number of these two element types listed in any order. The
following example structure has an Overview element and a
Question element followed by a second Overview element and
Question element–all within the same QuestionForm.

<QuestionForm xmlns="[the QuestionForm schema URL]">
 <Overview>
 [...]
 </Overview>
 <Question>
 [...]
 </Question>
 <Overview>
 [...]
 </Overview>
 <Question>
 [...]
 </Question>
 [...]
</QuestionForm>

QuestionForm is implemented as a list, so to construct a
QuestionForm, simply append Questions and Overviews (with at least
one Question).

	
get_as_xml()

	

	
is_valid()

	

	
schema_url = 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2005-10-01/QuestionForm.xsd'

	

	
xml_template = '<QuestionForm xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2005-10-01/QuestionForm.xsd">%(items)s</QuestionForm>'

	

	
class boto.mturk.question.RegExConstraint(pattern, error_text=None, flags=None)

	
	
attribute_names = ('regex', 'errorText', 'flags')

	

	
template = '<AnswerFormatRegex %(attrs)s />'

	

	
class boto.mturk.question.SelectionAnswer(min=1, max=1, style=None, selections=None, type='text', other=False)

	A class to generate SelectionAnswer XML data structures.
Does not yet implement Binary selection options.

	
ACCEPTED_STYLES = ['radiobutton', 'dropdown', 'checkbox', 'list', 'combobox', 'multichooser']

	

	
MAX_SELECTION_COUNT_XML_TEMPLATE = '<MaxSelectionCount>%s</MaxSelectionCount>'

	

	
MIN_SELECTION_COUNT_XML_TEMPLATE = '<MinSelectionCount>%s</MinSelectionCount>'

	

	
OTHER_SELECTION_ELEMENT_NAME = 'OtherSelection'

	

	
SELECTIONANSWER_XML_TEMPLATE = '<SelectionAnswer>%s%s<Selections>%s</Selections></SelectionAnswer>'

	

	
SELECTION_VALUE_XML_TEMPLATE = '<%s>%s</%s>'

	

	
SELECTION_XML_TEMPLATE = '<Selection><SelectionIdentifier>%s</SelectionIdentifier>%s</Selection>'

	

	
STYLE_XML_TEMPLATE = '<StyleSuggestion>%s</StyleSuggestion>'

	

	
get_as_xml()

	

	
class boto.mturk.question.SimpleField(field, value)

	A Simple name/value pair that can be easily rendered as XML.

>>> SimpleField('Text', 'A text string').get_as_xml()
'<Text>A text string</Text>'

	
template = '<%(field)s>%(value)s</%(field)s>'

	

	
class boto.mturk.question.ValidatingXML

	
	
validate()

	

	
class boto.mturk.question.XMLTemplate

	
	
get_as_xml()

	

Boto Config

Introduction

There is a growing list of configuration options for the boto library. Many of
these options can be passed into the constructors for top-level objects such as
connections. Some options, such as credentials, can also be read from
environment variables (e.g. AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY).
But there is no central place to manage these options. So, the development
version of boto has now introduced the notion of boto config files.

Details

A boto config file is simply a .ini format configuration file that specifies
values for options that control the behavior of the boto library. Upon startup,
the boto library looks for configuration files in the following locations
and in the following order:

	/etc/boto.cfg - for site-wide settings that all users on this machine will use

	~/.boto - for user-specific settings

The options are merged into a single, in-memory configuration that is
available as boto.config. The boto.pyami.config.Config
class is a subclass of the standard Python
ConfigParser.SafeConfigParser [https://docs.python.org/2/library/configparser.html#ConfigParser.SafeConfigParser] object and inherits all of the
methods of that object. In addition, the boto
Config class defines additional
methods that are described on the PyamiConfigMethods page.

Sections

The following sections and options are currently recognized within the
boto config file.

Credentials

The Credentials section is used to specify the AWS credentials used for all
boto requests. The order of precedence for authentication credentials is:

	Credentials passed into Connection class constructor.

	Credentials specified by environment variables

	Credentials specified as options in the config file.

This section defines the following options: aws_access_key_id and
aws_secret_access_key. The former being your aws key id and the latter
being the secret key.

For example:

[Credentials]
aws_access_key_id = <your access key>
aws_secret_access_key = <your secret key>

Please notice that quote characters are not used to either side of the ‘=’
operator even when both your aws access key id and secret key are strings.

Boto

The Boto section is used to specify options that control the operaton of
boto itself. This section defines the following options:

	debug:	Controls the level of debug messages that will be printed by the boto library.
The following values are defined:

0 - no debug messages are printed
1 - basic debug messages from boto are printed
2 - all boto debugging messages plus request/response messages from httplib

	proxy:	The name of the proxy host to use for connecting to AWS.

	proxy_port:	The port number to use to connect to the proxy host.

	proxy_user:	The user name to use when authenticating with proxy host.

	proxy_pass:	The password to use when authenticating with proxy host.

	num_retries:	The number of times to retry failed requests to an AWS server.
If boto receives an error from AWS, it will attempt to recover and retry the
request. The default number of retries is 5 but you can change the default
with this option.

As an example:

[Boto]
debug = 0
num_retries = 10

proxy = myproxy.com
proxy_port = 8080
proxy_user = foo
proxy_pass = bar

Precedence

Even if you have your boto config setup, you can also have credentials and
options stored in environmental variables or you can explicitly pass them to
method calls i.e.:

>>> boto.connect_ec2('<KEY_ID>','<SECRET_KEY>')

In these cases where these options can be found in more than one place boto
will first use the explicitly supplied arguments, if none found it will then
look for them amidst environment variables and if that fails it will use the
ones in boto config.

API Reference

	boto
	boto

	boto.connection

	boto.exception

	boto.handler

	boto.resultset

	boto.utils

	cloudformation
	boto.cloudformation

	boto.cloudformation.stack

	boto.cloudformation.template

	CloudFront
	boto.cloudfront

	boto.cloudfront.distribution

	boto.cloudfront.origin

	boto.cloudfront.exception

	contrib
	boto.contrib

	boto.contrib.m2helpers

	boto.contrib.ymlmessage

	DynamoDB
	boto.dynamodb

	boto.dynamodb.layer1

	boto.dynamodb.layer2

	boto.dynamodb.table

	boto.dynamodb.schema

	boto.dynamodb.item

	boto.dynamodb.batch

	EC2
	boto.ec2

	boto.ec2.address

	boto.ec2.autoscale

	boto.ec2.buyreservation

	boto.ec2.cloudwatch

	boto.ec2.connection

	boto.ec2.ec2object

	boto.ec2.elb

	boto.ec2.image

	boto.ec2.instance

	boto.ec2.instanceinfo

	boto.ec2.instancestatus

	boto.ec2.keypair

	boto.ec2.regioninfo

	boto.ec2.reservedinstance

	boto.ec2.securitygroup

	boto.ec2.snapshot

	boto.ec2.volume

	boto.ec2.zone

	ECS
	boto.ecs

	boto.ecs.item

	EMR
	boto.emr

	boto.emr.connection

	boto.emr.step

	boto.emr.emrobject

	file
	boto.file.bucket

	boto.file.simpleresultset

	boto.file.connection

	boto.file.key

	fps
	boto.fps

	boto.fps.connection

	GS
	boto.gs.acl

	boto.gs.bucket

	boto.gs.connection

	boto.gs.key

	boto.gs.user

	boto.gs.resumable_upload_handler

	IAM
	boto.iam

	boto.iam.connection

	boto.iam.summarymap

	manage
	boto.manage

	boto.manage.cmdshell

	boto.manage.propget

	boto.manage.server

	boto.manage.task

	boto.manage.volume

	mturk
	boto.mturk

	boto.mturk.connection

	boto.mturk.notification

	boto.mturk.price

	boto.mturk.qualification

	boto.mturk.question

	pyami
	boto.pyami

	boto.pyami.bootstrap

	boto.pyami.config

	boto.pyami.copybot

	boto.pyami.installers

	boto.pyami.installers.ubuntu

	boto.pyami.installers.ubuntu.apache

	boto.pyami.installers.ubuntu.ebs

	boto.pyami.installers.ubuntu.installer

	boto.pyami.installers.ubuntu.mysql

	boto.pyami.installers.ubuntu.trac

	boto.pyami.launch_ami

	boto.pyami.scriptbase

	boto.pyami.startup

	RDS
	boto.rds

	boto.rds.dbinstance

	boto.rds.dbsecuritygroup

	boto.rds.dbsnapshot

	boto.rds.event

	boto.rds.parametergroup

	route53
	boto.route53.connection

	boto.route53.hostedzone

	boto.route53.exception

	S3
	boto.s3.acl

	boto.s3.bucket

	boto.s3.bucketlistresultset

	boto.s3.connection

	boto.s3.key

	boto.s3.prefix

	boto.s3.user

	boto.s3.multipart

	boto.s3.resumable_download_handler

	boto.s3.deletemarker

	SDB Reference
	boto.sdb

	boto.sdb.connection

	boto.sdb.domain

	boto.sdb.item

	boto.sdb.queryresultset

	services
	boto.services

	boto.services.bs

	boto.services.message

	boto.services.result

	boto.services.service

	boto.services.servicedef

	boto.services.sonofmmm

	boto.services.submit

	SES
	boto.ses

	boto.ses.connection

	SNS
	boto.sns

	SQS
	boto.sqs

	boto.sqs.attributes

	boto.sqs.connection

	boto.sqs.jsonmessage

	boto.sqs.message

	boto.sqs.queue

	boto.sqs.regioninfo

	boto.sqs.batchresults

	STS
	boto.sts

	boto.sts.credentials

	VPC
	boto.vpc

	boto.vpc.customergateway

	boto.vpc.dhcpoptions

	boto.vpc.subnet

	boto.vpc.vpc

	boto.vpc.vpnconnection

	boto.vpc.vpngateway

boto

boto

	
class boto.NullHandler(level=0)

	Initializes the instance - basically setting the formatter to None
and the filter list to empty.

	
emit(record)

	

	
boto.check_extensions(module_name, module_path)

	This function checks for extensions to boto modules. It should be called in the
__init__.py file of all boto modules. See:
http://code.google.com/p/boto/wiki/ExtendModules

for details.

	
boto.connect_autoscale(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.ec2.autoscale.AutoScaleConnection

	Returns:	A connection to Amazon’s Auto Scaling Service

	
boto.connect_cloudformation(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.cloudformation.CloudFormationConnection

	Returns:	A connection to Amazon’s CloudFormation Service

	
boto.connect_cloudfront(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.fps.connection.FPSConnection

	Returns:	A connection to FPS

	
boto.connect_cloudwatch(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.ec2.cloudwatch.CloudWatchConnection

	Returns:	A connection to Amazon’s EC2 Monitoring service

	
boto.connect_dynamodb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.dynamodb.layer2.Layer2

	Returns:	A connection to the Layer2 interface for DynamoDB.

	
boto.connect_ec2(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.ec2.connection.EC2Connection

	Returns:	A connection to Amazon’s EC2

	
boto.connect_ec2_endpoint(url, aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	Connect to an EC2 Api endpoint. Additional arguments are passed
through to connect_ec2.

	Parameters:	
	url (string [https://docs.python.org/2/library/string.html#module-string]) – A url for the ec2 api endpoint to connect to

	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.ec2.connection.EC2Connection

	Returns:	A connection to Eucalyptus server

	
boto.connect_elb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.ec2.elb.ELBConnection

	Returns:	A connection to Amazon’s Load Balancing Service

	
boto.connect_emr(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.emr.EmrConnection

	Returns:	A connection to Elastic mapreduce

	
boto.connect_euca(host=None, aws_access_key_id=None, aws_secret_access_key=None, port=8773, path='/services/Eucalyptus', is_secure=False, **kwargs)

	Connect to a Eucalyptus service.

	Parameters:	
	host (string [https://docs.python.org/2/library/string.html#module-string]) – the host name or ip address of the Eucalyptus server

	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.ec2.connection.EC2Connection

	Returns:	A connection to Eucalyptus server

	
boto.connect_fps(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.fps.connection.FPSConnection

	Returns:	A connection to FPS

	
boto.connect_gs(gs_access_key_id=None, gs_secret_access_key=None, **kwargs)

	@type gs_access_key_id: string
@param gs_access_key_id: Your Google Cloud Storage Access Key ID

@type gs_secret_access_key: string
@param gs_secret_access_key: Your Google Cloud Storage Secret Access Key

@rtype: L{GSConnection<boto.gs.connection.GSConnection>}
@return: A connection to Google’s Storage service

	
boto.connect_ia(ia_access_key_id=None, ia_secret_access_key=None, is_secure=False, **kwargs)

	Connect to the Internet Archive via their S3-like API.

	Parameters:	
	ia_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your IA Access Key ID. This will also look in your
boto config file for an entry in the Credentials
section called “ia_access_key_id”

	ia_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your IA Secret Access Key. This will also
look in your boto config file for an entry
in the Credentials section called
“ia_secret_access_key”

	Return type:	boto.s3.connection.S3Connection

	Returns:	A connection to the Internet Archive

	
boto.connect_iam(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.iam.IAMConnection

	Returns:	A connection to Amazon’s IAM

	
boto.connect_mturk(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.mturk.connection.MTurkConnection

	Returns:	A connection to MTurk

	
boto.connect_rds(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.rds.RDSConnection

	Returns:	A connection to RDS

	
boto.connect_route53(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.dns.Route53Connection

	Returns:	A connection to Amazon’s Route53 DNS Service

	
boto.connect_s3(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.s3.connection.S3Connection

	Returns:	A connection to Amazon’s S3

	
boto.connect_sdb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.sdb.connection.SDBConnection

	Returns:	A connection to Amazon’s SDB

	
boto.connect_ses(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.ses.SESConnection

	Returns:	A connection to Amazon’s SES

	
boto.connect_sns(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.sns.SNSConnection

	Returns:	A connection to Amazon’s SNS

	
boto.connect_sqs(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.sqs.connection.SQSConnection

	Returns:	A connection to Amazon’s SQS

	
boto.connect_sts(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.sts.STSConnection

	Returns:	A connection to Amazon’s STS

	
boto.connect_vpc(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	

	Parameters:	
	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.vpc.VPCConnection

	Returns:	A connection to VPC

	
boto.connect_walrus(host=None, aws_access_key_id=None, aws_secret_access_key=None, port=8773, path='/services/Walrus', is_secure=False, **kwargs)

	Connect to a Walrus service.

	Parameters:	
	host (string [https://docs.python.org/2/library/string.html#module-string]) – the host name or ip address of the Walrus server

	aws_access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Access Key ID

	aws_secret_access_key (string [https://docs.python.org/2/library/string.html#module-string]) – Your AWS Secret Access Key

	Return type:	boto.s3.connection.S3Connection

	Returns:	A connection to Walrus

	
boto.init_logging()

	

	
boto.lookup(service, name)

	

	
boto.set_file_logger(name, filepath, level=20, format_string=None)

	

	
boto.set_stream_logger(name, level=10, format_string=None)

	

	
boto.storage_uri(uri_str, default_scheme='file', debug=0, validate=True, bucket_storage_uri_class=<class 'boto.storage_uri.BucketStorageUri'>, suppress_consec_slashes=True)

	Instantiate a StorageUri from a URI string.

	Parameters:	
	uri_str (string [https://docs.python.org/2/library/string.html#module-string]) – URI naming bucket + optional object.

	default_scheme (string [https://docs.python.org/2/library/string.html#module-string]) – default scheme for scheme-less URIs.

	debug (int [https://docs.python.org/2/library/functions.html#int]) – debug level to pass in to boto connection (range 0..2).

	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to check for bucket name validity.

	bucket_storage_uri_class (BucketStorageUri interface.) – Allows mocking for unit tests.

	suppress_consec_slashes – If provided, controls whether
consecutive slashes will be suppressed in key paths.

We allow validate to be disabled to allow caller
to implement bucket-level wildcarding (outside the boto library;
see gsutil).

	Return type:	boto.StorageUri subclass

	Returns:	StorageUri subclass for given URI.

uri_str must be one of the following formats:

	gs://bucket/name

	s3://bucket/name

	gs://bucket

	s3://bucket

	filename

The last example uses the default scheme (‘file’, unless overridden)

	
boto.storage_uri_for_key(key)

	Returns a StorageUri for the given key.

	Parameters:	key (boto.s3.key.Key or subclass) – URI naming bucket + optional object.

boto.connection

Handles basic connections to AWS

	
class boto.connection.AWSAuthConnection(host, aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, path='/', provider='aws', security_token=None, suppress_consec_slashes=True)

	

	Parameters:	
	host (str [https://docs.python.org/2/library/functions.html#str]) – The host to make the connection to

	aws_access_key_id (str [https://docs.python.org/2/library/functions.html#str]) – Your AWS Access Key ID (provided by
Amazon). If none is specified, the value in your
AWS_ACCESS_KEY_ID environmental variable is used.

	aws_secret_access_key (str [https://docs.python.org/2/library/functions.html#str]) – Your AWS Secret Access Key
(provided by Amazon). If none is specified, the value in your
AWS_SECRET_ACCESS_KEY environmental variable is used.

	is_secure (boolean) – Whether the connection is over SSL

	https_connection_factory (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – A pair of an HTTP connection
factory and the exceptions to catch.
The factory should have a similar
interface to L{httplib.HTTPSConnection}.

	proxy (str [https://docs.python.org/2/library/functions.html#str]) – Address/hostname for a proxy server

	proxy_port (int [https://docs.python.org/2/library/functions.html#int]) – The port to use when connecting over a proxy

	proxy_user (str [https://docs.python.org/2/library/functions.html#str]) – The username to connect with on the proxy

	proxy_pass (str [https://docs.python.org/2/library/functions.html#str]) – The password to use when connection over a proxy.

	port (int [https://docs.python.org/2/library/functions.html#int]) – The port to use to connect

	suppress_consec_slashes (bool [https://docs.python.org/2/library/functions.html#bool]) – If provided, controls whether
consecutive slashes will be suppressed in key paths.

	
access_key

	

	
aws_access_key_id

	

	
aws_secret_access_key

	

	
build_base_http_request(method, path, auth_path, params=None, headers=None, data='', host=None)

	

	
close()

	(Optional) Close any open HTTP connections. This is non-destructive,
and making a new request will open a connection again.

	
connection

	

	
get_http_connection(host, is_secure)

	

	
get_path(path='/')

	

	
get_proxy_auth_header()

	

	
gs_access_key_id

	

	
gs_secret_access_key

	

	
handle_proxy(proxy, proxy_port, proxy_user, proxy_pass)

	

	
make_request(method, path, headers=None, data='', host=None, auth_path=None, sender=None, override_num_retries=None)

	Makes a request to the server, with stock multiple-retry logic.

	
new_http_connection(host, is_secure)

	

	
prefix_proxy_to_path(path, host=None)

	

	
proxy_ssl()

	

	
put_http_connection(host, is_secure, connection)

	

	
secret_key

	

	
server_name(port=None)

	

	
class boto.connection.AWSQueryConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host=None, debug=0, https_connection_factory=None, path='/', security_token=None)

	
	
APIVersion = ''

	

	
ResponseError

	alias of BotoServerError

	
build_list_params(params, items, label)

	

	
get_list(action, params, markers, path='/', parent=None, verb='GET')

	

	
get_object(action, params, cls, path='/', parent=None, verb='GET')

	

	
get_status(action, params, path='/', parent=None, verb='GET')

	

	
get_utf8_value(value)

	

	
make_request(action, params=None, path='/', verb='GET')

	

	
class boto.connection.ConnectionPool

	A connection pool that expires connections after a fixed period of
time. This saves time spent waiting for a connection that AWS has
timed out on the other end.

This class is thread-safe.

	
CLEAN_INTERVAL = 5.0

	

	
STALE_DURATION = 60.0

	

	
clean()

	Clean up the stale connections in all of the pools, and then
get rid of empty pools. Pools clean themselves every time a
connection is fetched; this cleaning takes care of pools that
aren’t being used any more, so nothing is being gotten from
them.

	
get_http_connection(host, is_secure)

	Gets a connection from the pool for the named host. Returns
None if there is no connection that can be reused. It’s the caller’s
responsibility to call close() on the connection when it’s no longer
needed.

	
put_http_connection(host, is_secure, conn)

	Adds a connection to the pool of connections that can be
reused for the named host.

	
size()

	Returns the number of connections in the pool.

	
class boto.connection.HTTPRequest(method, protocol, host, port, path, auth_path, params, headers, body)

	Represents an HTTP request.

	Parameters:	
	method (string [https://docs.python.org/2/library/string.html#module-string]) – The HTTP method name, ‘GET’, ‘POST’, ‘PUT’ etc.

	protocol (string [https://docs.python.org/2/library/string.html#module-string]) – The http protocol used, ‘http’ or ‘https’.

	host (string [https://docs.python.org/2/library/string.html#module-string]) – Host to which the request is addressed. eg. abc.com

	port (int [https://docs.python.org/2/library/functions.html#int]) – port on which the request is being sent. Zero means unset,
in which case default port will be chosen.

	path (string [https://docs.python.org/2/library/string.html#module-string]) – URL path that is being accessed.

	path – The part of the URL path used when creating the
authentication string.

	params (dict) – HTTP url query parameters, with key as name of the param,
and value as value of param.

	headers (dict) – HTTP headers, with key as name of the header and value
as value of header.

	body (string [https://docs.python.org/2/library/string.html#module-string]) – Body of the HTTP request. If not present, will be None or
empty string (‘’).

	
authorize(connection, **kwargs)

	

	
class boto.connection.HostConnectionPool

	A pool of connections for one remote (host,is_secure).

When connections are added to the pool, they are put into a
pending queue. The _mexe method returns connections to the pool
before the response body has been read, so they connections aren’t
ready to send another request yet. They stay in the pending queue
until they are ready for another request, at which point they are
returned to the pool of ready connections.

The pool of ready connections is an ordered list of
(connection,time) pairs, where the time is the time the connection
was returned from _mexe. After a certain period of time,
connections are considered stale, and discarded rather than being
reused. This saves having to wait for the connection to time out
if AWS has decided to close it on the other end because of
inactivity.

Thread Safety:

This class is used only fram ConnectionPool while it’s mutex
is held.

	
clean()

	Get rid of stale connections.

	
get()

	Returns the next connection in this pool that is ready to be
reused. Returns None of there aren’t any.

	
put(conn)

	Adds a connection to the pool, along with the time it was
added.

	
size()

	Returns the number of connections in the pool for this host.
Some of the connections may still be in use, and may not be
ready to be returned by get().

boto.exception

Exception classes - Subclassing allows you to check for specific errors

	
exception boto.exception.AWSConnectionError(reason, *args)

	General error connecting to Amazon Web Services.

	
exception boto.exception.BotoClientError(reason, *args)

	General Boto Client error (error accessing AWS)

	
exception boto.exception.BotoServerError(status, reason, body=None, *args)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.exception.ConsoleOutput(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
exception boto.exception.DynamoDBResponseError(status, reason, data)

	

	
exception boto.exception.EC2ResponseError(status, reason, body=None)

	Error in response from EC2.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
exception boto.exception.EmrResponseError(status, reason, body=None, *args)

	Error in response from EMR

	
exception boto.exception.FPSResponseError(status, reason, body=None, *args)

	

	
exception boto.exception.GSCopyError(status, reason, body=None, *args)

	Error copying a key on GS.

	
exception boto.exception.GSCreateError(status, reason, body=None)

	Error creating a bucket or key on GS.

	
exception boto.exception.GSDataError(reason, *args)

	Error receiving data from GS.

	
exception boto.exception.GSPermissionsError(reason, *args)

	Permissions error when accessing a bucket or key on GS.

	
exception boto.exception.GSResponseError(status, reason, body=None)

	Error in response from GS.

	
exception boto.exception.InvalidAclError(message)

	Exception raised when ACL XML is invalid.

	
exception boto.exception.InvalidUriError(message)

	Exception raised when URI is invalid.

	
exception boto.exception.NoAuthHandlerFound

	Is raised when no auth handlers were found ready to authenticate.

	
exception boto.exception.ResumableDownloadException(message, disposition)

	Exception raised for various resumable download problems.

self.disposition is of type ResumableTransferDisposition.

	
class boto.exception.ResumableTransferDisposition

	
	
ABORT = 'ABORT'

	

	
ABORT_CUR_PROCESS = 'ABORT_CUR_PROCESS'

	

	
START_OVER = 'START_OVER'

	

	
WAIT_BEFORE_RETRY = 'WAIT_BEFORE_RETRY'

	

	
exception boto.exception.ResumableUploadException(message, disposition)

	Exception raised for various resumable upload problems.

self.disposition is of type ResumableTransferDisposition.

	
exception boto.exception.S3CopyError(status, reason, body=None, *args)

	Error copying a key on S3.

	
exception boto.exception.S3CreateError(status, reason, body=None)

	Error creating a bucket or key on S3.

	
exception boto.exception.S3DataError(reason, *args)

	Error receiving data from S3.

	
exception boto.exception.S3PermissionsError(reason, *args)

	Permissions error when accessing a bucket or key on S3.

	
exception boto.exception.S3ResponseError(status, reason, body=None)

	Error in response from S3.

	
exception boto.exception.SDBPersistenceError

	

	
exception boto.exception.SDBResponseError(status, reason, body=None, *args)

	Error in responses from SDB.

	
exception boto.exception.SQSDecodeError(reason, message)

	Error when decoding an SQS message.

	
exception boto.exception.SQSError(status, reason, body=None)

	General Error on Simple Queue Service.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
exception boto.exception.StorageCopyError(status, reason, body=None, *args)

	Error copying a key on a storage service.

	
exception boto.exception.StorageCreateError(status, reason, body=None)

	Error creating a bucket or key on a storage service.

	
endElement(name, value, connection)

	

	
exception boto.exception.StorageDataError(reason, *args)

	Error receiving data from a storage service.

	
exception boto.exception.StoragePermissionsError(reason, *args)

	Permissions error when accessing a bucket or key on a storage service.

	
exception boto.exception.StorageResponseError(status, reason, body=None)

	Error in response from a storage service.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
exception boto.exception.TooManyAuthHandlerReadyToAuthenticate

	Is raised when there are more than one auth handler ready.

In normal situation there should only be one auth handler that is ready to
authenticate. In case where more than one auth handler is ready to
authenticate, we raise this exception, to prevent unpredictable behavior
when multiple auth handlers can handle a particular case and the one chosen
depends on the order they were checked.

boto.handler

	
class boto.handler.XmlHandler(root_node, connection)

	
	
characters(content)

	

	
endElement(name)

	

	
startElement(name, attrs)

	

boto.resultset

	
class boto.resultset.BooleanResult(marker_elem=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_boolean(value, true_value='true')

	

	
class boto.resultset.ResultSet(marker_elem=None)

	The ResultSet is used to pass results back from the Amazon services
to the client. It is light wrapper around Python’s list class,
with some additional methods for parsing XML results from AWS.
Because I don’t really want any dependencies on external libraries,
I’m using the standard SAX parser that comes with Python. The good news is
that it’s quite fast and efficient but it makes some things rather
difficult.

You can pass in, as the marker_elem parameter, a list of tuples.
Each tuple contains a string as the first element which represents
the XML element that the resultset needs to be on the lookout for
and a Python class as the second element of the tuple. Each time the
specified element is found in the XML, a new instance of the class
will be created and popped onto the stack.

	Variables:	next_token (str [https://docs.python.org/2/library/functions.html#str]) – A hash used to assist in paging through very long
result sets. In most cases, passing this value to certain methods
will give you another ‘page’ of results.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_boolean(value, true_value='true')

	

boto.utils

Some handy utility functions used by several classes.

	
class boto.utils.AuthSMTPHandler(mailhost, username, password, fromaddr, toaddrs, subject)

	This class extends the SMTPHandler in the standard Python logging module
to accept a username and password on the constructor and to then use those
credentials to authenticate with the SMTP server. To use this, you could
add something like this in your boto config file:

[handler_hand07]
class=boto.utils.AuthSMTPHandler
level=WARN
formatter=form07
args=(‘localhost’, ‘username’, ‘password’, 'from@abc‘, ['user1@abc‘, 'user2@xyz‘], ‘Logger Subject’)

Initialize the handler.

We have extended the constructor to accept a username/password
for SMTP authentication.

	
emit(record)

	Emit a record.

Format the record and send it to the specified addressees.
It would be really nice if I could add authorization to this class
without having to resort to cut and paste inheritance but, no.

	
class boto.utils.LRUCache(capacity)

	A dictionary-like object that stores only a certain number of items, and
discards its least recently used item when full.

>>> cache = LRUCache(3)
>>> cache['A'] = 0
>>> cache['B'] = 1
>>> cache['C'] = 2
>>> len(cache)
3

>>> cache['A']
0

Adding new items to the cache does not increase its size. Instead, the least
recently used item is dropped:

>>> cache['D'] = 3
>>> len(cache)
3
>>> 'B' in cache
False

Iterating over the cache returns the keys, starting with the most recently
used:

>>> for key in cache:
... print key
D
A
C

This code is based on the LRUCache class from Genshi which is based on
Mighty’s LRUCache from myghtyutils.util, written
by Mike Bayer and released under the MIT license (Genshi uses the
BSD License). See:

http://svn.myghty.org/myghtyutils/trunk/lib/myghtyutils/util.py

	
class boto.utils.Password(str=None, hashfunc=None)

	Password object that stores itself as hashed.
Hash defaults to SHA512 if available, MD5 otherwise.

Load the string from an initial value, this should be the raw hashed password.

	
hashfunc()

	Returns a sha512 hash object; optionally initialized with a string

	
set(value)

	

	
class boto.utils.ShellCommand(command, wait=True, fail_fast=False, cwd=None)

	
	
getOutput()

	

	
getStatus()

	

	
output

	The STDIN and STDERR output of the command

	
run(cwd=None)

	

	
setReadOnly(value)

	

	
status

	The exit code for the command

	
boto.utils.canonical_string(method, path, headers, expires=None, provider=None)

	

	
boto.utils.compute_md5(fp, buf_size=8192, size=None)

	Compute MD5 hash on passed file and return results in a tuple of values.

	Parameters:	
	fp (file) – File pointer to the file to MD5 hash. The file pointer
will be reset to its current location before the
method returns.

	buf_size (integer) – Number of bytes per read request.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where the file is being
split inplace into different parts. Less bytes may
be available.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

	Returns:	A tuple containing the hex digest version of the MD5 hash
as the first element, the base64 encoded version of the
plain digest as the second element and the data size as
the third element.

	
boto.utils.fetch_file(uri, file=None, username=None, password=None)

	Fetch a file based on the URI provided. If you do not pass in a file pointer
a tempfile.NamedTemporaryFile, or None if the file could not be
retrieved is returned.
The URI can be either an HTTP url, or “s3://bucket_name/key_name”

	
boto.utils.find_class(module_name, class_name=None)

	

	
boto.utils.get_aws_metadata(headers, provider=None)

	

	
boto.utils.get_instance_metadata(version='latest', url='http://169.254.169.254')

	Returns the instance metadata as a nested Python dictionary.
Simple values (e.g. local_hostname, hostname, etc.) will be
stored as string values. Values such as ancestor-ami-ids will
be stored in the dict as a list of string values. More complex
fields such as public-keys and will be stored as nested dicts.

	
boto.utils.get_instance_userdata(version='latest', sep=None, url='http://169.254.169.254')

	

	
boto.utils.get_ts(ts=None)

	

	
boto.utils.get_utf8_value(value)

	

	
boto.utils.guess_mime_type(content, deftype)

	Description: Guess the mime type of a block of text
:param content: content we’re finding the type of
:type str:

	Parameters:	deftype – Default mime type

	Return type:	<type>:

	Returns:	<description>

	
boto.utils.merge_meta(headers, metadata, provider=None)

	

	
boto.utils.mklist(value)

	

	
boto.utils.notify(subject, body=None, html_body=None, to_string=None, attachments=None, append_instance_id=True)

	

	
boto.utils.parse_ts(ts)

	

	
boto.utils.pythonize_name(name, sep='_')

	

	
boto.utils.retry_url(url, retry_on_404=True, num_retries=10)

	

	
boto.utils.unquote_v(nv)

	

	
boto.utils.update_dme(username, password, dme_id, ip_address)

	Update your Dynamic DNS record with DNSMadeEasy.com

	
boto.utils.write_mime_multipart(content, compress=False, deftype='text/plain', delimiter=':')

	Description:
:param content: A list of tuples of name-content pairs. This is used
instead of a dict to ensure that scripts run in order
:type list of tuples:

	Parameters:	
	compress – Use gzip to compress the scripts, defaults to no compression

	deftype – The type that should be assumed if nothing else can be figured out

	delimiter – mime delimiter

	Returns:	Final mime multipart

	Return type:	str:

cloudformation

boto.cloudformation

boto.cloudformation.stack

	
class boto.cloudformation.stack.Output(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.stack.Parameter(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.stack.Stack(connection=None)

	
	
delete()

	

	
describe_events(next_token=None)

	

	
describe_resource(logical_resource_id)

	

	
describe_resources(logical_resource_id=None, physical_resource_id=None)

	

	
endElement(name, value, connection)

	

	
get_template()

	

	
list_resources(next_token=None)

	

	
startElement(name, attrs, connection)

	

	
update()

	

	
class boto.cloudformation.stack.StackEvent(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
valid_states = ('CREATE_IN_PROGRESS', 'CREATE_FAILED', 'CREATE_COMPLETE', 'DELETE_IN_PROGRESS', 'DELETE_FAILED', 'DELETE_COMPLETE')

	

	
class boto.cloudformation.stack.StackResource(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.stack.StackResourceSummary(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.stack.StackSummary(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.cloudformation.template

	
class boto.cloudformation.template.Template(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudformation.template.TemplateParameter(parent)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

CloudFront

boto.cloudfront

	
class boto.cloudfront.CloudFrontConnection(aws_access_key_id=None, aws_secret_access_key=None, port=None, proxy=None, proxy_port=None, host='cloudfront.amazonaws.com', debug=0)

	
	
DefaultHost = 'cloudfront.amazonaws.com'

	

	
Version = '2010-11-01'

	

	
create_distribution(origin, enabled, caller_reference='', cnames=None, comment='', trusted_signers=None)

	

	
create_invalidation_request(distribution_id, paths, caller_reference=None)

	Creates a new invalidation request
:see: http://goo.gl/8vECq

	
create_origin_access_identity(caller_reference='', comment='')

	

	
create_streaming_distribution(origin, enabled, caller_reference='', cnames=None, comment='', trusted_signers=None)

	

	
delete_distribution(distribution_id, etag)

	

	
delete_origin_access_identity(access_id, etag)

	

	
delete_streaming_distribution(distribution_id, etag)

	

	
get_all_distributions()

	

	
get_all_origin_access_identity()

	

	
get_all_streaming_distributions()

	

	
get_distribution_config(distribution_id)

	

	
get_distribution_info(distribution_id)

	

	
get_etag(response)

	

	
get_origin_access_identity_config(access_id)

	

	
get_origin_access_identity_info(access_id)

	

	
get_streaming_distribution_config(distribution_id)

	

	
get_streaming_distribution_info(distribution_id)

	

	
invalidation_request_status(distribution_id, request_id, caller_reference=None)

	

	
set_distribution_config(distribution_id, etag, config)

	

	
set_origin_access_identity_config(access_id, etag, config)

	

	
set_streaming_distribution_config(distribution_id, etag, config)

	

boto.cloudfront.distribution

	
class boto.cloudfront.distribution.Distribution(connection=None, config=None, domain_name='', id='', last_modified_time=None, status='')

	
	
add_object(name, content, headers=None, replace=True)

	Adds a new content object to the Distribution. The content
for the object will be copied to a new Key in the S3 Bucket
and the permissions will be set appropriately for the type
of Distribution.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The name or key of the new object.

	content (file-like object) – A file-like object that contains the content
for the new object.

	headers (dict) – A dictionary containing additional headers
you would like associated with the new
object in S3.

	Return type:	boto.cloudfront.object.Object

	Returns:	The newly created object.

	
create_signed_url(url, keypair_id, expire_time=None, valid_after_time=None, ip_address=None, policy_url=None, private_key_file=None, private_key_string=None)

	Creates a signed CloudFront URL that is only valid within the specified
parameters.

	Parameters:	
	url (str [https://docs.python.org/2/library/functions.html#str]) – The URL of the protected object.

	keypair_id (str [https://docs.python.org/2/library/functions.html#str]) – The keypair ID of the Amazon KeyPair used to sign
theURL. This ID MUST correspond to the private key
specified with private_key_file or private_key_string.

	expire_time (int [https://docs.python.org/2/library/functions.html#int]) – The expiry time of the URL. If provided, the URL
will expire after the time has passed. If not provided the URL will
never expire. Format is a unix epoch.
Use time.time() + duration_in_sec.

	valid_after_time (int [https://docs.python.org/2/library/functions.html#int]) – If provided, the URL will not be valid until
after valid_after_time. Format is a unix epoch.
Use time.time() + secs_until_valid.

	ip_address (str [https://docs.python.org/2/library/functions.html#str]) – If provided, only allows access from the specified
IP address. Use ‘192.168.0.10’ for a single IP or
use ‘192.168.0.0/24’ CIDR notation for a subnet.

	policy_url (str [https://docs.python.org/2/library/functions.html#str]) – If provided, allows the signature to contain
wildcard globs in the URL. For example, you could
provide: ‘http://example.com/media/*‘ and the policy
and signature would allow access to all contents of
the media subdirectory. If not specified, only
allow access to the exact url provided in ‘url’.

	private_key_file (str [https://docs.python.org/2/library/functions.html#str] or file object.) – If provided, contains the filename of the
private key file used for signing or an open
file object containing the private key
contents. Only one of private_key_file or
private_key_string can be provided.

	private_key_string (str [https://docs.python.org/2/library/functions.html#str]) – If provided, contains the private key string
used for signing. Only one of private_key_file or
private_key_string can be provided.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The signed URL.

	
delete()

	Delete this CloudFront Distribution. The content
associated with the Distribution is not deleted from
the underlying Origin bucket in S3.

	
disable()

	Activate the Distribution. A convenience wrapper around
the update method.

	
enable()

	Deactivate the Distribution. A convenience wrapper around
the update method.

	
endElement(name, value, connection)

	

	
get_objects()

	Return a list of all content objects in this distribution.

	Return type:	list of boto.cloudfront.object.Object

	Returns:	The content objects

	
set_permissions(object, replace=False)

	Sets the S3 ACL grants for the given object to the appropriate
value based on the type of Distribution. If the Distribution
is serving private content the ACL will be set to include the
Origin Access Identity associated with the Distribution. If
the Distribution is serving public content the content will
be set up with “public-read”.

	Parameters:	
	enabled – The Object whose ACL is being set

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If False, the Origin Access Identity will be
appended to the existing ACL for the object.
If True, the ACL for the object will be
completely replaced with one that grants
READ permission to the Origin Access Identity.

	
set_permissions_all(replace=False)

	Sets the S3 ACL grants for all objects in the Distribution
to the appropriate value based on the type of Distribution.

	Parameters:	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If False, the Origin Access Identity will be
appended to the existing ACL for the object.
If True, the ACL for the object will be
completely replaced with one that grants
READ permission to the Origin Access Identity.

	
startElement(name, attrs, connection)

	

	
update(enabled=None, cnames=None, comment=None)

	Update the configuration of the Distribution. The only values
of the DistributionConfig that can be directly updated are:

	CNAMES

	Comment

	Whether the Distribution is enabled or not

Any changes to the trusted_signers or origin properties of
this distribution’s current config object will also be included in
the update. Therefore, to set the origin access identity for this
distribution, set Distribution.config.origin.origin_access_identity
before calling this update method.

	Parameters:	
	enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the Distribution is active or not.

	cnames (list of str) – The DNS CNAME’s associated with this
Distribution. Maximum of 10 values.

	comment (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The comment associated with the Distribution.

	
class boto.cloudfront.distribution.DistributionConfig(connection=None, origin=None, enabled=False, caller_reference='', cnames=None, comment='', trusted_signers=None, default_root_object=None, logging=None)

	

	Parameters:	
	origin (boto.cloudfront.origin.S3Origin or
boto.cloudfront.origin.CustomOrigin) – Origin information to associate with the
distribution. If your distribution will use
an Amazon S3 origin, then this should be an
S3Origin object. If your distribution will use
a custom origin (non Amazon S3), then this
should be a CustomOrigin object.

	enabled (array of str) – Whether the distribution is enabled to accept
end user requests for content.

	caller_reference – A unique number that ensures the
request can’t be replayed. If no
caller_reference is provided, boto
will generate a type 4 UUID for use
as the caller reference.

	cnames – A CNAME alias you want to associate with this
distribution. You can have up to 10 CNAME aliases
per distribution.

	comment (str [https://docs.python.org/2/library/functions.html#str]) – Any comments you want to include about the
distribution.

	trusted_signers (:class`boto.cloudfront.signers.TrustedSigners`) – Specifies any AWS accounts you want to
permit to create signed URLs for private
content. If you want the distribution to
use signed URLs, this should contain a
TrustedSigners object; if you want the
distribution to use basic URLs, leave
this None.

	default_root_object – Designates a default root object.
Only include a DefaultRootObject value
if you are going to assign a default
root object for the distribution.

	logging (:class`boto.cloudfront.logging.LoggingInfo`) – Controls whether access logs are written for the
distribution. If you want to turn on access logs,
this should contain a LoggingInfo object; otherwise
it should contain None.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.cloudfront.distribution.DistributionSummary(connection=None, domain_name='', id='', last_modified_time=None, status='', origin=None, cname='', comment='', enabled=False)

	
	
endElement(name, value, connection)

	

	
get_distribution()

	

	
startElement(name, attrs, connection)

	

	
class boto.cloudfront.distribution.StreamingDistribution(connection=None, config=None, domain_name='', id='', last_modified_time=None, status='')

	
	
delete()

	

	
startElement(name, attrs, connection)

	

	
update(enabled=None, cnames=None, comment=None)

	Update the configuration of the StreamingDistribution. The only values
of the StreamingDistributionConfig that can be directly updated are:

	CNAMES

	Comment

	Whether the Distribution is enabled or not

Any changes to the trusted_signers or origin properties of
this distribution’s current config object will also be included in
the update. Therefore, to set the origin access identity for this
distribution, set
StreamingDistribution.config.origin.origin_access_identity
before calling this update method.

	Parameters:	
	enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the StreamingDistribution is active or not.

	cnames (list of str) – The DNS CNAME’s associated with this
Distribution. Maximum of 10 values.

	comment (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The comment associated with the Distribution.

	
class boto.cloudfront.distribution.StreamingDistributionConfig(connection=None, origin='', enabled=False, caller_reference='', cnames=None, comment='', trusted_signers=None, logging=None)

	
	
to_xml()

	

	
class boto.cloudfront.distribution.StreamingDistributionSummary(connection=None, domain_name='', id='', last_modified_time=None, status='', origin=None, cname='', comment='', enabled=False)

	
	
get_distribution()

	

boto.cloudfront.origin

	
class boto.cloudfront.origin.CustomOrigin(dns_name=None, http_port=80, https_port=443, origin_protocol_policy=None)

	Origin information to associate with the distribution.
If your distribution will use a non-Amazon S3 origin,
then you use the CustomOrigin element.

	Parameters:	
	dns_name (str [https://docs.python.org/2/library/functions.html#str]) – The DNS name of your Amazon S3 bucket to
associate with the distribution.
For example: mybucket.s3.amazonaws.com.

	http_port (int [https://docs.python.org/2/library/functions.html#int]) – The HTTP port the custom origin listens on.

	https_port – The HTTPS port the custom origin listens on.

	origin_protocol_policy (str [https://docs.python.org/2/library/functions.html#str]) – The origin protocol policy to
apply to your origin. If you
specify http-only, CloudFront
will use HTTP only to access the origin.
If you specify match-viewer, CloudFront
will fetch from your origin using HTTP
or HTTPS, based on the protocol of the
viewer request.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.cloudfront.origin.S3Origin(dns_name=None, origin_access_identity=None)

	Origin information to associate with the distribution.
If your distribution will use an Amazon S3 origin,
then you use the S3Origin element.

	Parameters:	
	dns_name (str [https://docs.python.org/2/library/functions.html#str]) – The DNS name of your Amazon S3 bucket to
associate with the distribution.
For example: mybucket.s3.amazonaws.com.

	origin_access_identity (str [https://docs.python.org/2/library/functions.html#str]) – The CloudFront origin access
identity to associate with the
distribution. If you want the
distribution to serve private content,
include this element; if you want the
distribution to serve public content,
remove this element.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
boto.cloudfront.origin.get_oai_value(origin_access_identity)

	

boto.cloudfront.exception

	
exception boto.cloudfront.exception.CloudFrontServerError(status, reason, body=None, *args)

	

contrib

boto.contrib

boto.contrib.m2helpers

Note

This module requires installation of M2Crypto [http://sandbox.rulemaker.net/ngps/m2/] in your Python path.

boto.contrib.ymlmessage

This module was contributed by Chris Moyer. It provides a subclass of the
SQS Message class that supports YAML as the body of the message.

This module requires the yaml module.

	
class boto.contrib.ymlmessage.YAMLMessage(queue=None, body='', xml_attrs=None)

	The YAMLMessage class provides a YAML compatible message. Encoding and
decoding are handled automaticaly.

Access this message data like such:

m.data = [1, 2, 3]
m.data[0] # Returns 1

This depends on the PyYAML package

	
get_body()

	

	
set_body(body)

	

DynamoDB

boto.dynamodb

boto.dynamodb.layer1

	
class boto.dynamodb.layer1.Layer1(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, host=None, debug=0, session_token=None)

	This is the lowest-level interface to DynamoDB. Methods at this
layer map directly to API requests and parameters to the methods
are either simple, scalar values or they are the Python equivalent
of the JSON input as defined in the DynamoDB Developer’s Guide.
All responses are direct decoding of the JSON response bodies to
Python data structures via the json or simplejson modules.

	Variables:	throughput_exceeded_events – An integer variable that
keeps a running total of the number of ThroughputExceeded
responses this connection has received from Amazon DynamoDB.

	
DefaultHost = 'dynamodb.us-east-1.amazonaws.com'

	The default DynamoDB API endpoint to connect to.

	
ResponseError

	alias of DynamoDBResponseError

	
ServiceName = 'DynamoDB'

	The name of the Service

	
SessionExpiredError = 'com.amazon.coral.service#ExpiredTokenException'

	The error response returned when session token has expired

	
ThruputError = 'ProvisionedThroughputExceededException'

	The error response returned when provisioned throughput is exceeded

	
Version = '20111205'

	DynamoDB API version.

	
batch_get_item(request_items, object_hook=None)

	Return a set of attributes for a multiple items in
multiple tables using their primary keys.

	Parameters:	request_items (dict) – A Python version of the RequestItems
data structure defined by DynamoDB.

	
create_table(table_name, schema, provisioned_throughput)

	Add a new table to your account. The table name must be unique
among those associated with the account issuing the request.
This request triggers an asynchronous workflow to begin creating
the table. When the workflow is complete, the state of the
table will be ACTIVE.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to create.

	schema (dict) – A Python version of the KeySchema data structure
as defined by DynamoDB

	provisioned_throughput (dict) – A Python version of the
ProvisionedThroughput data structure defined by
DynamoDB.

	
delete_item(table_name, key, expected=None, return_values=None, object_hook=None)

	Delete an item and all of it’s attributes by primary key.
You can perform a conditional delete by specifying an
expected rule.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table containing the item.

	key (dict) – A Python version of the Key data structure
defined by DynamoDB.

	expected (dict) – A Python version of the Expected
data structure defined by DynamoDB.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
delete_table(table_name)

	Deletes the table and all of it’s data. After this request
the table will be in the DELETING state until DynamoDB
completes the delete operation.

	Parameters:	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to delete.

	
describe_table(table_name)

	Returns information about the table including current
state of the table, primary key schema and when the
table was created.

	Parameters:	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to describe.

	
get_item(table_name, key, attributes_to_get=None, consistent_read=False, object_hook=None)

	Return a set of attributes for an item that matches
the supplied key.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table containing the item.

	key (dict) – A Python version of the Key data structure
defined by DynamoDB.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	
list_tables(limit=None, start_table=None)

	Return a list of table names associated with the current account
and endpoint.

	Parameters:	
	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of tables to return.

	limit – The name of the table that starts the
list. If you ran a previous list_tables and not
all results were returned, the response dict would
include a LastEvaluatedTableName attribute. Use
that value here to continue the listing.

	
make_request(action, body='', object_hook=None)

	

	Raises:	DynamoDBExpiredTokenError if the security token expires.

	
put_item(table_name, item, expected=None, return_values=None, object_hook=None)

	Create a new item or replace an old item with a new
item (including all attributes). If an item already
exists in the specified table with the same primary
key, the new item will completely replace the old item.
You can perform a conditional put by specifying an
expected rule.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table in which to put the item.

	item (dict) – A Python version of the Item data structure
defined by DynamoDB.

	expected (dict) – A Python version of the Expected
data structure defined by DynamoDB.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
query(table_name, hash_key_value, range_key_conditions=None, attributes_to_get=None, limit=None, consistent_read=False, scan_index_forward=True, exclusive_start_key=None, object_hook=None)

	Perform a query of DynamoDB. This version is currently punting
and expecting you to provide a full and correct JSON body
which is passed as is to DynamoDB.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to query.

	key – A DynamoDB-style HashKeyValue.

	range_key_conditions (dict) – A Python version of the
RangeKeyConditions data structure.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to return.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	scan_index_forward (bool [https://docs.python.org/2/library/functions.html#bool]) – Specified forward or backward
traversal of the index. Default is forward (True).

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	
scan(table_name, scan_filter=None, attributes_to_get=None, limit=None, count=False, exclusive_start_key=None, object_hook=None)

	Perform a scan of DynamoDB. This version is currently punting
and expecting you to provide a full and correct JSON body
which is passed as is to DynamoDB.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to scan.

	scan_filter (dict) – A Python version of the
ScanFilter data structure.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to return.

	count (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, Amazon DynamoDB returns a total
number of items for the Scan operation, even if the
operation has no matching items for the assigned filter.

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	
update_item(table_name, key, attribute_updates, expected=None, return_values=None, object_hook=None)

	Edits an existing item’s attributes. You can perform a conditional
update (insert a new attribute name-value pair if it doesn’t exist,
or replace an existing name-value pair if it has certain expected
attribute values).

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table.

	key (dict) – A Python version of the Key data structure
defined by DynamoDB which identifies the item to be updated.

	attribute_updates (dict) – A Python version of the AttributeUpdates
data structure defined by DynamoDB.

	expected (dict) – A Python version of the Expected
data structure defined by DynamoDB.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
update_table(table_name, provisioned_throughput)

	Updates the provisioned throughput for a given table.

	Parameters:	
	table_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the table to update.

	provisioned_throughput (dict) – A Python version of the
ProvisionedThroughput data structure defined by
DynamoDB.

boto.dynamodb.layer2

	
class boto.dynamodb.layer2.Layer2(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, host=None, debug=0, session_token=None)

	
	
batch_get_item(batch_list)

	Return a set of attributes for a multiple items in
multiple tables using their primary keys.

	Parameters:	batch_list (boto.dynamodb.batch.BatchList) – A BatchList object which consists of a
list of boto.dynamoddb.batch.Batch objects.
Each Batch object contains the information about one
batch of objects that you wish to retrieve in this
request.

	
build_key_from_values(schema, hash_key, range_key=None)

	Build a Key structure to be used for accessing items
in Amazon DynamoDB. This method takes the supplied hash_key
and optional range_key and validates them against the
schema. If there is a mismatch, a TypeError is raised.
Otherwise, a Python dict version of a Amazon DynamoDB Key
data structure is returned.

	Parameters:	
	hash_key (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str], or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The hash key of the item you are looking for.
The type of the hash key should match the type defined in
the schema.

	range_key (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The range key of the item your are looking for.
This should be supplied only if the schema requires a
range key. The type of the range key should match the
type defined in the schema.

	
create_schema(hash_key_name, hash_key_proto_value, range_key_name=None, range_key_proto_value=None)

	Create a Schema object used when creating a Table.

	Parameters:	
	hash_key_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the HashKey for the schema.

	hash_key_proto_value (int|long|float|str|unicode) – A sample or prototype of the type
of value you want to use for the HashKey.

	range_key_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the RangeKey for the schema.
This parameter is optional.

	range_key_proto_value (int|long|float|str|unicode) – A sample or prototype of the type
of value you want to use for the RangeKey. This parameter
is optional.

	
create_table(name, schema, read_units, write_units)

	Create a new Amazon DynamoDB table.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the desired table.

	schema (boto.dynamodb.schema.Schema) – The Schema object that defines the schema used
by this table.

	read_units (int [https://docs.python.org/2/library/functions.html#int]) – The value for ReadCapacityUnits.

	write_units (int [https://docs.python.org/2/library/functions.html#int]) – The value for WriteCapacityUnits.

	Return type:	boto.dynamodb.table.Table

	Returns:	A Table object representing the new Amazon DynamoDB table.

	
delete_item(item, expected_value=None, return_values=None)

	Delete the item from Amazon DynamoDB.

	Parameters:	
	item (boto.dynamodb.item.Item) – The Item to delete from Amazon DynamoDB.

	expected_value (dict) – A dictionary of name/value pairs that you expect.
This dictionary should have name/value pairs where the name
is the name of the attribute and the value is either the value
you are expecting or False if you expect the attribute not to
exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
delete_table(table)

	Delete this table and all items in it. After calling this
the Table objects status attribute will be set to ‘DELETING’.

	Parameters:	table (boto.dynamodb.table.Table) – The Table object that is being deleted.

	
describe_table(name)

	Retrieve information about an existing table.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the desired table.

	
dynamize_attribute_updates(pending_updates)

	Convert a set of pending item updates into the structure
required by Layer1.

	
dynamize_expected_value(expected_value)

	Convert an expected_value parameter into the data structure
required for Layer1.

	
dynamize_item(item)

	

	
dynamize_last_evaluated_key(last_evaluated_key)

	Convert a last_evaluated_key parameter into the data structure
required for Layer1.

	
dynamize_range_key_condition(range_key_condition)

	Convert a layer2 range_key_condition parameter into the
structure required by Layer1.

	
dynamize_request_items(batch_list)

	Convert a request_items parameter into the data structure
required for Layer1.

	
dynamize_scan_filter(scan_filter)

	Convert a layer2 scan_filter parameter into the
structure required by Layer1.

	
dynamize_value(val)

	Take a scalar Python value and return a dict consisting
of the Amazon DynamoDB type specification and the value that
needs to be sent to Amazon DynamoDB. If the type of the value
is not supported, raise a TypeError

	
get_dynamodb_type(val)

	Take a scalar Python value and return a string representing
the corresponding Amazon DynamoDB type. If the value passed in is
not a supported type, raise a TypeError.

	
get_item(table, hash_key, range_key=None, attributes_to_get=None, consistent_read=False, item_class=<class 'boto.dynamodb.item.Item'>)

	Retrieve an existing item from the table.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object from which the item is retrieved.

	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key (int|long|float|str|unicode) – The optional RangeKey of the requested item.
The type of the value must match the type defined in the
schema for the table.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	
get_table(name)

	Retrieve the Table object for an existing table.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the desired table.

	Return type:	boto.dynamodb.table.Table

	Returns:	A Table object representing the table.

	
list_tables(limit=None, start_table=None)

	Return a list of the names of all Tables associated with the
current account and region.
TODO - Layer2 should probably automatically handle pagination.

	Parameters:	
	limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of tables to return.

	limit – The name of the table that starts the
list. If you ran a previous list_tables and not
all results were returned, the response dict would
include a LastEvaluatedTableName attribute. Use
that value here to continue the listing.

	
lookup(name)

	Retrieve the Table object for an existing table.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the desired table.

	Return type:	boto.dynamodb.table.Table

	Returns:	A Table object representing the table.

	
new_batch_list()

	Return a new, empty boto.dynamodb.batch.BatchList
object.

	
put_item(item, expected_value=None, return_values=None)

	Store a new item or completely replace an existing item
in Amazon DynamoDB.

	Parameters:	
	item (boto.dynamodb.item.Item) – The Item to write to Amazon DynamoDB.

	expected_value (dict) – A dictionary of name/value pairs that you expect.
This dictionary should have name/value pairs where the name
is the name of the attribute and the value is either the value
you are expecting or False if you expect the attribute not to
exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
query(table, hash_key, range_key_condition=None, attributes_to_get=None, request_limit=None, max_results=None, consistent_read=False, scan_index_forward=True, exclusive_start_key=None, item_class=<class 'boto.dynamodb.item.Item'>)

	Perform a query on the table.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object that is being queried.

	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key_condition (dict) – A dict where the key is either
a scalar value appropriate for the RangeKey in the schema
of the database or a tuple of such values. The value
associated with this key in the dict will be one of the
following conditions:

‘EQ’|’LE’|’LT’|’GE’|’GT’|’BEGINS_WITH’|’BETWEEN’

The only condition which expects or will accept a tuple
of values is ‘BETWEEN’, otherwise a scalar value should
be used as the key in the dict.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	request_limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to retrieve
from Amazon DynamoDB on each request. You may want to set
a specific request_limit based on the provisioned throughput
of your table. The default behavior is to retrieve as many
results as possible per request.

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of results that will
be retrieved from Amazon DynamoDB in total. For example,
if you only wanted to see the first 100 results from the
query, regardless of how many were actually available, you
could set max_results to 100 and the generator returned
from the query method will only yeild 100 results max.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	scan_index_forward (bool [https://docs.python.org/2/library/functions.html#bool]) – Specified forward or backward
traversal of the index. Default is forward (True).

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	Return type:	generator

	
scan(table, scan_filter=None, attributes_to_get=None, request_limit=None, max_results=None, count=False, exclusive_start_key=None, item_class=<class 'boto.dynamodb.item.Item'>)

	Perform a scan of DynamoDB.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object that is being scanned.

	scan_filter (A list of tuples) – A list of tuples where each tuple consists
of an attribute name, a comparison operator, and either
a scalar or tuple consisting of the values to compare
the attribute to. Valid comparison operators are shown below
along with the expected number of values that should be supplied.

	EQ - equal (1)

	NE - not equal (1)

	LE - less than or equal (1)

	LT - less than (1)

	GE - greater than or equal (1)

	GT - greater than (1)

	NOT_NULL - attribute exists (0, use None)

	NULL - attribute does not exist (0, use None)

	CONTAINS - substring or value in list (1)

	NOT_CONTAINS - absence of substring or value in list (1)

	BEGINS_WITH - substring prefix (1)

	IN - exact match in list (N)

	BETWEEN - >= first value, <= second value (2)

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	request_limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to retrieve
from Amazon DynamoDB on each request. You may want to set
a specific request_limit based on the provisioned throughput
of your table. The default behavior is to retrieve as many
results as possible per request.

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of results that will
be retrieved from Amazon DynamoDB in total. For example,
if you only wanted to see the first 100 results from the
query, regardless of how many were actually available, you
could set max_results to 100 and the generator returned
from the query method will only yeild 100 results max.

	count (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, Amazon DynamoDB returns a total
number of items for the Scan operation, even if the
operation has no matching items for the assigned filter.

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	Return type:	generator

	
update_item(item, expected_value=None, return_values=None)

	Commit pending item updates to Amazon DynamoDB.

	Parameters:	
	item (boto.dynamodb.item.Item) – The Item to update in Amazon DynamoDB. It is expected
that you would have called the add_attribute, put_attribute
and/or delete_attribute methods on this Item prior to calling
this method. Those queued changes are what will be updated.

	expected_value (dict) – A dictionary of name/value pairs that you
expect. This dictionary should have name/value pairs where the
name is the name of the attribute and the value is either the
value you are expecting or False if you expect the attribute
not to exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute name/value pairs
before they were updated. Possible values are: None, ‘ALL_OLD’,
‘UPDATED_OLD’, ‘ALL_NEW’ or ‘UPDATED_NEW’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content of the old item
is returned. If ‘ALL_NEW’ is specified, then all the attributes of
the new version of the item are returned. If ‘UPDATED_NEW’ is
specified, the new versions of only the updated attributes are
returned.

	
update_throughput(table, read_units, write_units)

	Update the ProvisionedThroughput for the Amazon DynamoDB Table.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object whose throughput is being updated.

	read_units (int [https://docs.python.org/2/library/functions.html#int]) – The new value for ReadCapacityUnits.

	write_units (int [https://docs.python.org/2/library/functions.html#int]) – The new value for WriteCapacityUnits.

	
boto.dynamodb.layer2.convert_num(s)

	

	
boto.dynamodb.layer2.is_num(n)

	

	
boto.dynamodb.layer2.is_str(n)

	

	
boto.dynamodb.layer2.item_object_hook(dct)

	A custom object hook for use when decoding JSON item bodys.
This hook will transform Amazon DynamoDB JSON responses to something
that maps directly to native Python types.

boto.dynamodb.table

	
class boto.dynamodb.table.Table(layer2, response=None)

	An Amazon DynamoDB table.

	Variables:	
	name – The name of the table.

	create_time – The date and time that the table was created.

	status – The current status of the table. One of:
‘ACTIVE’, ‘UPDATING’, ‘DELETING’.

	schema – A boto.dynamodb.schema.Schema object representing
the schema defined for the table.

	item_count – The number of items in the table. This value is
set only when the Table object is created or refreshed and
may not reflect the actual count.

	size_bytes – Total size of the specified table, in bytes.
Amazon DynamoDB updates this value approximately every six hours.
Recent changes might not be reflected in this value.

	read_units – The ReadCapacityUnits of the tables
Provisioned Throughput.

	write_units – The WriteCapacityUnits of the tables
Provisioned Throughput.

	schema – The Schema object associated with the table.

	
create_time

	

	
delete()

	Delete this table and all items in it. After calling this
the Table objects status attribute will be set to ‘DELETING’.

	
get_item(hash_key, range_key=None, attributes_to_get=None, consistent_read=False, item_class=<class 'boto.dynamodb.item.Item'>)

	Retrieve an existing item from the table.

	Parameters:	
	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key (int|long|float|str|unicode) – The optional RangeKey of the requested item.
The type of the value must match the type defined in the
schema for the table.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	
has_item(hash_key, range_key=None, consistent_read=False)

	Checks the table to see if the Item with the specified hash_key
exists. This may save a tiny bit of time/bandwidth over a
straight get_item() if you have no intention to touch
the data that is returned, since this method specifically tells
Amazon not to return anything but the Item’s key.

	Parameters:	
	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key (int|long|float|str|unicode) – The optional RangeKey of the requested item.
The type of the value must match the type defined in the
schema for the table.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if the Item exists, False if not.

	
item_count

	

	
lookup(hash_key, range_key=None, attributes_to_get=None, consistent_read=False, item_class=<class 'boto.dynamodb.item.Item'>)

	Retrieve an existing item from the table.

	Parameters:	
	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key (int|long|float|str|unicode) – The optional RangeKey of the requested item.
The type of the value must match the type defined in the
schema for the table.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	
name

	

	
new_item(hash_key, range_key=None, attrs=None)

	Return an new, unsaved Item which can later be PUT to
Amazon DynamoDB.

	
query(hash_key, range_key_condition=None, attributes_to_get=None, request_limit=None, max_results=None, consistent_read=False, scan_index_forward=True, exclusive_start_key=None, item_class=<class 'boto.dynamodb.item.Item'>)

	Perform a query on the table.

	Parameters:	
	hash_key (int|long|float|str|unicode) – The HashKey of the requested item. The
type of the value must match the type defined in the
schema for the table.

	range_key_condition (dict) – A dict where the key is either
a scalar value appropriate for the RangeKey in the schema
of the database or a tuple of such values. The value
associated with this key in the dict will be one of the
following conditions:

‘EQ’|’LE’|’LT’|’GE’|’GT’|’BEGINS_WITH’|’BETWEEN’

The only condition which expects or will accept a tuple
of values is ‘BETWEEN’, otherwise a scalar value should
be used as the key in the dict.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	request_limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to retrieve
from Amazon DynamoDB on each request. You may want to set
a specific request_limit based on the provisioned throughput
of your table. The default behavior is to retrieve as many
results as possible per request.

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of results that will
be retrieved from Amazon DynamoDB in total. For example,
if you only wanted to see the first 100 results from the
query, regardless of how many were actually available, you
could set max_results to 100 and the generator returned
from the query method will only yeild 100 results max.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a consistent read
request is issued. Otherwise, an eventually consistent
request is issued.

	scan_index_forward (bool [https://docs.python.org/2/library/functions.html#bool]) – Specified forward or backward
traversal of the index. Default is forward (True).

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	
read_units

	

	
refresh(wait_for_active=False, retry_seconds=5)

	Refresh all of the fields of the Table object by calling
the underlying DescribeTable request.

	Parameters:	
	wait_for_active (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this command will not return
until the table status, as returned from Amazon DynamoDB, is
‘ACTIVE’.

	retry_seconds (int [https://docs.python.org/2/library/functions.html#int]) – If wait_for_active is True, this
parameter controls the number of seconds of delay between
calls to update_table in Amazon DynamoDB. Default is 5 seconds.

	
scan(scan_filter=None, attributes_to_get=None, request_limit=None, max_results=None, count=False, exclusive_start_key=None, item_class=<class 'boto.dynamodb.item.Item'>)

	Scan through this table, this is a very long
and expensive operation, and should be avoided if
at all possible.

	Parameters:	
	scan_filter (A list of tuples) – A list of tuples where each tuple consists
of an attribute name, a comparison operator, and either
a scalar or tuple consisting of the values to compare
the attribute to. Valid comparison operators are shown below
along with the expected number of values that should be supplied.

	EQ - equal (1)

	NE - not equal (1)

	LE - less than or equal (1)

	LT - less than (1)

	GE - greater than or equal (1)

	GT - greater than (1)

	NOT_NULL - attribute exists (0, use None)

	NULL - attribute does not exist (0, use None)

	CONTAINS - substring or value in list (1)

	NOT_CONTAINS - absence of substring or value in list (1)

	BEGINS_WITH - substring prefix (1)

	IN - exact match in list (N)

	BETWEEN - >= first value, <= second value (2)

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	request_limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to retrieve
from Amazon DynamoDB on each request. You may want to set
a specific request_limit based on the provisioned throughput
of your table. The default behavior is to retrieve as many
results as possible per request.

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of results that will
be retrieved from Amazon DynamoDB in total. For example,
if you only wanted to see the first 100 results from the
query, regardless of how many were actually available, you
could set max_results to 100 and the generator returned
from the query method will only yeild 100 results max.

	count (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, Amazon DynamoDB returns a total
number of items for the Scan operation, even if the
operation has no matching items for the assigned filter.

	exclusive_start_key (list or tuple [https://docs.python.org/2/library/functions.html#tuple]) – Primary key of the item from
which to continue an earlier query. This would be
provided as the LastEvaluatedKey in that query.

	item_class (Class) – Allows you to override the class used
to generate the items. This should be a subclass of
boto.dynamodb.item.Item

	Return type:	generator

	
schema

	

	
size_bytes

	

	
status

	

	
update_from_response(response)

	Update the state of the Table object based on the response
data received from Amazon DynamoDB.

	
update_throughput(read_units, write_units)

	Update the ProvisionedThroughput for the Amazon DynamoDB Table.

	Parameters:	
	read_units (int [https://docs.python.org/2/library/functions.html#int]) – The new value for ReadCapacityUnits.

	write_units (int [https://docs.python.org/2/library/functions.html#int]) – The new value for WriteCapacityUnits.

	
write_units

	

boto.dynamodb.schema

	
class boto.dynamodb.schema.Schema(schema_dict)

	Represents a DynamoDB schema.

	Variables:	
	hash_key_name – The name of the hash key of the schema.

	hash_key_type – The DynamoDB type specification for the
hash key of the schema.

	range_key_name – The name of the range key of the schema
or None if no range key is defined.

	range_key_type – The DynamoDB type specification for the
range key of the schema or None if no range key is defined.

	dict – The underlying Python dictionary that needs to be
passed to Layer1 methods.

	
dict

	

	
hash_key_name

	

	
hash_key_type

	

	
range_key_name

	

	
range_key_type

	

boto.dynamodb.item

	
class boto.dynamodb.item.Item(table, hash_key=None, range_key=None, attrs=None)

	An item in Amazon DynamoDB.

	Variables:	
	hash_key – The HashKey of this item.

	range_key – The RangeKey of this item or None if no RangeKey
is defined.

	hash_key_name – The name of the HashKey associated with this item.

	range_key_name – The name of the RangeKey associated with this item.

	table – The Table this item belongs to.

	
add_attribute(attr_name, attr_value)

	Queue the addition of an attribute to an item in DynamoDB.
This will eventually result in an UpdateItem request being issued
with an update action of ADD when the save method is called.

	Parameters:	
	attr_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the attribute you want to alter.

	attr_value (int|long|float|set) – Value which is to be added to the attribute.

	
delete(expected_value=None, return_values=None)

	Delete the item from DynamoDB.

	Parameters:	
	expected_value (dict) – A dictionary of name/value pairs that you expect.
This dictionary should have name/value pairs where the name
is the name of the attribute and the value is either the value
you are expecting or False if you expect the attribute not to
exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
delete_attribute(attr_name, attr_value=None)

	Queue the deletion of an attribute from an item in DynamoDB.
This call will result in a UpdateItem request being issued
with update action of DELETE when the save method is called.

	Parameters:	
	attr_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the attribute you want to alter.

	attr_value (set) – A set of values to be removed from the attribute.
This parameter is optional. If None, the whole attribute is
removed from the item.

	
hash_key

	

	
hash_key_name

	

	
put(expected_value=None, return_values=None)

	Store a new item or completely replace an existing item
in Amazon DynamoDB.

	Parameters:	
	expected_value (dict) – A dictionary of name/value pairs that you expect.
This dictionary should have name/value pairs where the name
is the name of the attribute and the value is either the value
you are expecting or False if you expect the attribute not to
exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute
name-value pairs before then were changed. Possible
values are: None or ‘ALL_OLD’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content
of the old item is returned.

	
put_attribute(attr_name, attr_value)

	Queue the putting of an attribute to an item in DynamoDB.
This call will result in an UpdateItem request being issued
with the update action of PUT when the save method is called.

	Parameters:	
	attr_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the attribute you want to alter.

	attr_value (int|long|float|str|set) – New value of the attribute.

	
range_key

	

	
range_key_name

	

	
save(expected_value=None, return_values=None)

	Commits pending updates to Amazon DynamoDB.

	Parameters:	
	expected_value (dict) – A dictionary of name/value pairs that
you expect. This dictionary should have name/value pairs
where the name is the name of the attribute and the value is
either the value you are expecting or False if you expect
the attribute not to exist.

	return_values (str [https://docs.python.org/2/library/functions.html#str]) – Controls the return of attribute name/value pairs
before they were updated. Possible values are: None, ‘ALL_OLD’,
‘UPDATED_OLD’, ‘ALL_NEW’ or ‘UPDATED_NEW’. If ‘ALL_OLD’ is
specified and the item is overwritten, the content of the old item
is returned. If ‘ALL_NEW’ is specified, then all the attributes of
the new version of the item are returned. If ‘UPDATED_NEW’ is
specified, the new versions of only the updated attributes are
returned.

boto.dynamodb.batch

	
class boto.dynamodb.batch.Batch(table, keys, attributes_to_get=None)

	

	Variables:	
	table – The Table object from which the item is retrieved.

	keys – A list of scalar or tuple values. Each element in the
list represents one Item to retrieve. If the schema for the
table has both a HashKey and a RangeKey, each element in the
list should be a tuple consisting of (hash_key, range_key). If
the schema for the table contains only a HashKey, each element
in the list should be a scalar value of the appropriate type
for the table schema.

	attributes_to_get – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	
class boto.dynamodb.batch.BatchList(layer2)

	A subclass of a list object that contains a collection of
boto.dynamodb.batch.Batch objects.

	
add_batch(table, keys, attributes_to_get=None)

	Add a Batch to this BatchList.

	Parameters:	
	table (boto.dynamodb.table.Table) – The Table object in which the items are contained.

	keys (list) – A list of scalar or tuple values. Each element in the
list represents one Item to retrieve. If the schema for the
table has both a HashKey and a RangeKey, each element in the
list should be a tuple consisting of (hash_key, range_key). If
the schema for the table contains only a HashKey, each element
in the list should be a scalar value of the appropriate type
for the table schema.

	attributes_to_get (list) – A list of attribute names.
If supplied, only the specified attribute names will
be returned. Otherwise, all attributes will be returned.

	
submit()

	

EC2

boto.ec2

This module provides an interface to the Elastic Compute Cloud (EC2)
service from AWS.

	
boto.ec2.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.ec2.connection.EC2Connection.
Any additional parameters after the region_name are passed on to
the connect method of the region object.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.ec2.connection.EC2Connection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.ec2.get_region(region_name, **kw_params)

	Find and return a boto.ec2.regioninfo.RegionInfo object
given a region name.

	Type:	str

	Param:	The name of the region.

	Return type:	boto.ec2.regioninfo.RegionInfo

	Returns:	The RegionInfo object for the given region or None if
an invalid region name is provided.

	
boto.ec2.regions(**kw_params)

	Get all available regions for the EC2 service.
You may pass any of the arguments accepted by the EC2Connection
object’s constructor as keyword arguments and they will be
passed along to the EC2Connection object.

	Return type:	list

	Returns:	A list of boto.ec2.regioninfo.RegionInfo

boto.ec2.address

Represents an EC2 Elastic IP Address

	
class boto.ec2.address.Address(connection=None, public_ip=None, instance_id=None)

	
	
associate(instance_id)

	

	
delete()

	

	
disassociate()

	

	
endElement(name, value, connection)

	

	
release()

	

boto.ec2.autoscale

See the Auto Scaling Reference.

boto.ec2.buyreservation

	
class boto.ec2.buyreservation.BuyReservation

	
	
get(params)

	

	
get_instance_type(params)

	

	
get_quantity(params)

	

	
get_region(params)

	

	
get_zone(params)

	

boto.ec2.cloudwatch

See the CloudWatch Reference.

boto.ec2.connection

Represents a connection to the EC2 service.

	
class boto.ec2.connection.EC2Connection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, host=None, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', api_version=None, security_token=None)

	Init method to create a new connection to EC2.

	
APIVersion = '2011-12-15'

	

	
DefaultRegionEndpoint = 'ec2.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of EC2ResponseError

	
allocate_address(domain=None)

	Allocate a new Elastic IP address and associate it with your account.

	Return type:	boto.ec2.address.Address

	Returns:	The newly allocated Address

	
associate_address(instance_id, public_ip=None, allocation_id=None)

	Associate an Elastic IP address with a currently running instance.
This requires one of public_ip or allocation_id depending
on if you’re associating a VPC address or a plain EC2 address.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the instance

	public_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The public IP address for EC2 based allocations.

	allocation_id (string [https://docs.python.org/2/library/string.html#module-string]) – The allocation ID for a VPC-based elastic IP.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
attach_network_interface(network_interface_id, instance_id, device_index)

	Attaches a network interface to an instance.

	Parameters:	
	network_interface_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the network interface to attach.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the instance that will be attached
to the network interface.

	device_index (int [https://docs.python.org/2/library/functions.html#int]) – The index of the device for the network
interface attachment on the instance.

	
attach_volume(volume_id, instance_id, device)

	Attach an EBS volume to an EC2 instance.

	Parameters:	
	volume_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EBS volume to be attached.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EC2 instance to which it will
be attached.

	device (str [https://docs.python.org/2/library/functions.html#str]) – The device on the instance through which the
volume will be exposted (e.g. /dev/sdh)

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
authorize_security_group(group_name=None, src_security_group_name=None, src_security_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, group_id=None, src_security_group_group_id=None)

	Add a new rule to an existing security group.
You need to pass in either src_security_group_name and
src_security_group_owner_id OR ip_protocol, from_port, to_port,
and cidr_ip. In other words, either you are authorizing another
group or you are authorizing some ip-based rule.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are adding
the rule to.

	src_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are
granting access to.

	src_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the security
group you are granting access to.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are enabling

	to_port (int [https://docs.python.org/2/library/functions.html#int]) – The ending port number you are enabling

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are providing access to.
See http://goo.gl/Yj5QC

	group_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the EC2 or VPC security group to modify.
This is required for VPC security groups and
can be used instead of group_name for EC2
security groups.

	group_id – ID of the EC2 or VPC source security group.
This is required for VPC security groups and
can be used instead of group_name for EC2
security groups.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
authorize_security_group_deprecated(group_name, src_security_group_name=None, src_security_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None)

	
	NOTE: This method uses the old-style request parameters

	that did not allow a port to be specified when
authorizing a group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are adding
the rule to.

	src_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are
granting access to.

	src_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the security
group you are granting access to.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are enabling

	to_port (string [https://docs.python.org/2/library/string.html#module-string]) – The ending port number you are enabling

	to_port – The CIDR block you are providing access to.
See http://goo.gl/Yj5QC

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
authorize_security_group_egress(group_id, ip_protocol, from_port=None, to_port=None, src_group_id=None, cidr_ip=None)

	The action adds one or more egress rules to a VPC security
group. Specifically, this action permits instances in a
security group to send traffic to one or more destination
CIDR IP address ranges, or to one or more destination
security groups in the same VPC.

	
build_filter_params(params, filters)

	

	
build_tag_param_list(params, tags)

	

	
bundle_instance(instance_id, s3_bucket, s3_prefix, s3_upload_policy)

	Bundle Windows instance.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance id

	s3_bucket (string [https://docs.python.org/2/library/string.html#module-string]) – The bucket in which the AMI should be stored.

	s3_prefix (string [https://docs.python.org/2/library/string.html#module-string]) – The beginning of the file name for the AMI.

	s3_upload_policy (string [https://docs.python.org/2/library/string.html#module-string]) – Base64 encoded policy that specifies condition
and permissions for Amazon EC2 to upload the
user’s image into Amazon S3.

	
cancel_bundle_task(bundle_id)

	Cancel a previously submitted bundle task

	Parameters:	bundle_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier of the bundle task to cancel.

	
cancel_spot_instance_requests(request_ids)

	Cancel the specified Spot Instance Requests.

	Parameters:	request_ids (list) – A list of strings of the Request IDs to terminate

	Return type:	list

	Returns:	A list of the instances terminated

	
confirm_product_instance(product_code, instance_id)

	

	
create_image(instance_id, name, description=None, no_reboot=False)

	Will create an AMI from the instance in the running or stopped
state.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – the ID of the instance to image.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new image

	description (string [https://docs.python.org/2/library/string.html#module-string]) – An optional human-readable string describing
the contents and purpose of the AMI.

	no_reboot (bool [https://docs.python.org/2/library/functions.html#bool]) – An optional flag indicating that the bundling process
should not attempt to shutdown the instance before
bundling. If this flag is True, the responsibility
of maintaining file system integrity is left to the
owner of the instance.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The new image id

	
create_key_pair(key_name)

	Create a new key pair for your account.
This will create the key pair within the region you
are currently connected to.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new keypair

	Return type:	boto.ec2.keypair.KeyPair

	Returns:	The newly created boto.ec2.keypair.KeyPair.
The material attribute of the new KeyPair object
will contain the the unencrypted PEM encoded RSA private key.

	
create_network_interface(subnet_id, private_ip_address=None, description=None, groups=None)

	Creates a network interface in the specified subnet.

	Parameters:	
	subnet_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the subnet to associate with the
network interface.

	private_ip_address (str [https://docs.python.org/2/library/functions.html#str]) – The private IP address of the
network interface. If not supplied, one will be chosen
for you.

	description (str [https://docs.python.org/2/library/functions.html#str]) – The description of the network interface.

	groups (list) – Lists the groups for use by the network interface.
This can be either a list of group ID’s or a list of
boto.ec2.securitygroup.SecurityGroup objects.

	Return type:	boto.ec2.networkinterface.NetworkInterface

	Returns:	The newly created network interface.

	
create_placement_group(name, strategy='cluster')

	Create a new placement group for your account.
This will create the placement group within the region you
are currently connected to.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new placement group

	strategy (string [https://docs.python.org/2/library/string.html#module-string]) – The placement strategy of the new placement group.
Currently, the only acceptable value is “cluster”.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
create_security_group(name, description, vpc_id=None)

	Create a new security group for your account.
This will create the security group within the region you
are currently connected to.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new security group

	description (string [https://docs.python.org/2/library/string.html#module-string]) – The description of the new security group

	vpc_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the VPC to create the security group in,
if any.

	Return type:	boto.ec2.securitygroup.SecurityGroup

	Returns:	The newly created boto.ec2.keypair.KeyPair.

	
create_snapshot(volume_id, description=None)

	Create a snapshot of an existing EBS Volume.

	Parameters:	
	volume_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the volume to be snapshot’ed

	description (str [https://docs.python.org/2/library/functions.html#str]) – A description of the snapshot.
Limited to 255 characters.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
create_spot_datafeed_subscription(bucket, prefix)

	Create a spot instance datafeed subscription for this account.

	Parameters:	
	bucket (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The name of the bucket where spot instance data
will be written. The account issuing this request
must have FULL_CONTROL access to the bucket
specified in the request.

	prefix (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – An optional prefix that will be pre-pended to all
data files written to the bucket.

	Return type:	boto.ec2.spotdatafeedsubscription.SpotDatafeedSubscription

	Returns:	The datafeed subscription object or None

	
create_tags(resource_ids, tags)

	Create new metadata tags for the specified resource ids.

	Parameters:	
	resource_ids (list) – List of strings

	tags (dict) – A dictionary containing the name/value pairs.
If you want to create only a tag name, the
value for that tag should be the empty string
(e.g. ‘’).

	
create_volume(size, zone, snapshot=None)

	Create a new EBS Volume.

	Parameters:	
	size (int [https://docs.python.org/2/library/functions.html#int]) – The size of the new volume, in GiB

	zone (string or boto.ec2.zone.Zone) – The availability zone in which the Volume will be created.

	snapshot (string or boto.ec2.snapshot.Snapshot) – The snapshot from which the new Volume will be created.

	
delete_key_pair(key_name)

	Delete a key pair from your account.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the keypair to delete

	
delete_network_interface(network_interface_id)

	Delete the specified network interface.

	Parameters:	network_interface_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the network interface to delete.

	
delete_placement_group(name)

	Delete a placement group from your account.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the keypair to delete

	
delete_security_group(name=None, group_id=None)

	Delete a security group from your account.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group to delete.

	group_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the security group to delete within
a VPC.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
delete_snapshot(snapshot_id)

	

	
delete_spot_datafeed_subscription()

	Delete the current spot instance data feed subscription
associated with this account

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_tags(resource_ids, tags)

	Delete metadata tags for the specified resource ids.

	Parameters:	
	resource_ids (list) – List of strings

	tags (dict or list) – Either a dictionary containing name/value pairs
or a list containing just tag names.
If you pass in a dictionary, the values must
match the actual tag values or the tag will
not be deleted. If you pass in a value of None
for the tag value, all tags with that name will
be deleted.

	
delete_volume(volume_id)

	Delete an EBS volume.

	Parameters:	volume_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the volume to be delete.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
deregister_image(image_id, delete_snapshot=False)

	Unregister an AMI.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – the ID of the Image to unregister

	delete_snapshot (bool [https://docs.python.org/2/library/functions.html#bool]) – Set to True if we should delete the
snapshot associated with an EBS volume
mounted at /dev/sda1

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
detach_network_interface(network_interface_id, force=False)

	Detaches a network interface from an instance.

	Parameters:	
	network_interface_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the network interface to detach.

	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Set to true to force a detachment.

	
detach_volume(volume_id, instance_id=None, device=None, force=False)

	Detach an EBS volume from an EC2 instance.

	Parameters:	
	volume_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EBS volume to be attached.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EC2 instance from which it will
be detached.

	device (str [https://docs.python.org/2/library/functions.html#str]) – The device on the instance through which the
volume is exposted (e.g. /dev/sdh)

	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Forces detachment if the previous detachment attempt did
not occur cleanly. This option can lead to data loss or
a corrupted file system. Use this option only as a last
resort to detach a volume from a failed instance. The
instance will not have an opportunity to flush file system
caches nor file system meta data. If you use this option,
you must perform file system check and repair procedures.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
disassociate_address(public_ip=None, association_id=None)

	Disassociate an Elastic IP address from a currently running instance.

	Parameters:	
	public_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The public IP address for EC2 elastic IPs.

	association_id (string [https://docs.python.org/2/library/string.html#module-string]) – The association ID for a VPC based elastic ip.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
get_all_addresses(addresses=None, filters=None, allocation_ids=None)

	Get all EIP’s associated with the current credentials.

	Parameters:	
	addresses (list) – Optional list of addresses. If this list is present,
only the Addresses associated with these addresses
will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	allocation_ids (list) – Optional list of allocation IDs. If this list is
present, only the Addresses associated with the given
allocation IDs will be returned.

	Return type:	list of boto.ec2.address.Address

	Returns:	The requested Address objects

	
get_all_bundle_tasks(bundle_ids=None, filters=None)

	Retrieve current bundling tasks. If no bundle id is specified, all
tasks are retrieved.

	Parameters:	
	bundle_ids (list) – A list of strings containing identifiers for
previously created bundling tasks.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	
get_all_images(image_ids=None, owners=None, executable_by=None, filters=None)

	Retrieve all the EC2 images available on your account.

	Parameters:	
	image_ids (list) – A list of strings with the image IDs wanted

	owners (list) – A list of owner IDs

	executable_by (list) – Returns AMIs for which the specified
user ID has explicit launch permissions

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.image.Image

	
get_all_instance_status(instance_ids=None, max_results=None, next_token=None, filters=None)

	Retrieve all the instances in your account scheduled for maintenance.

	Parameters:	
	instance_ids (list) – A list of strings of instance IDs

	max_results (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of paginated instance
items per response.

	next_token (str [https://docs.python.org/2/library/functions.html#str]) – A string specifying the next paginated set
of results to return.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of instances that have maintenance scheduled.

	
get_all_instances(instance_ids=None, filters=None)

	Retrieve all the instances associated with your account.

	Parameters:	
	instance_ids (list) – A list of strings of instance IDs

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.instance.Reservation

	
get_all_kernels(kernel_ids=None, owners=None)

	Retrieve all the EC2 kernels available on your account.
Constructs a filter to allow the processing to happen server side.

	Parameters:	
	kernel_ids (list) – A list of strings with the image IDs wanted

	owners (list) – A list of owner IDs

	Return type:	list

	Returns:	A list of boto.ec2.image.Image

	
get_all_key_pairs(keynames=None, filters=None)

	Get all key pairs associated with your account.

	Parameters:	
	keynames (list) – A list of the names of keypairs to retrieve.
If not provided, all key pairs will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.keypair.KeyPair

	
get_all_network_interfaces(filters=None)

	Retrieve all of the Elastic Network Interfaces (ENI’s)
associated with your account.

	Parameters:	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.networkinterface.NetworkInterface

	
get_all_placement_groups(groupnames=None, filters=None)

	Get all placement groups associated with your account in a region.

	Parameters:	
	groupnames (list) – A list of the names of placement groups to retrieve.
If not provided, all placement groups will be
returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.placementgroup.PlacementGroup

	
get_all_ramdisks(ramdisk_ids=None, owners=None)

	Retrieve all the EC2 ramdisks available on your account.
Constructs a filter to allow the processing to happen server side.

	Parameters:	
	ramdisk_ids (list) – A list of strings with the image IDs wanted

	owners (list) – A list of owner IDs

	Return type:	list

	Returns:	A list of boto.ec2.image.Image

	
get_all_regions(region_names=None, filters=None)

	Get all available regions for the EC2 service.

	Parameters:	
	region_names (list of str) – Names of regions to limit output

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.regioninfo.RegionInfo

	
get_all_reserved_instances(reserved_instances_id=None, filters=None)

	Describes Reserved Instance offerings that are available for purchase.

	Parameters:	
	reserved_instance_ids (list) – A list of the reserved instance ids that
will be returned. If not provided, all
reserved instances will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.reservedinstance.ReservedInstance

	
get_all_reserved_instances_offerings(reserved_instances_id=None, instance_type=None, availability_zone=None, product_description=None, filters=None)

	Describes Reserved Instance offerings that are available for purchase.

	Parameters:	
	reserved_instances_id (str [https://docs.python.org/2/library/functions.html#str]) – Displays Reserved Instances with the
specified offering IDs.

	instance_type (str [https://docs.python.org/2/library/functions.html#str]) – Displays Reserved Instances of the specified
instance type.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Displays Reserved Instances within the
specified Availability Zone.

	product_description (str [https://docs.python.org/2/library/functions.html#str]) – Displays Reserved Instances with the
specified product description.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.reservedinstance.ReservedInstancesOffering

	
get_all_security_groups(groupnames=None, group_ids=None, filters=None)

	Get all security groups associated with your account in a region.

	Parameters:	
	groupnames (list) – A list of the names of security groups to retrieve.
If not provided, all security groups will be
returned.

	group_ids (list) – A list of IDs of security groups to retrieve for
security groups within a VPC.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of boto.ec2.securitygroup.SecurityGroup

	
get_all_snapshots(snapshot_ids=None, owner=None, restorable_by=None, filters=None)

	Get all EBS Snapshots associated with the current credentials.

	Parameters:	
	snapshot_ids (list) – Optional list of snapshot ids. If this list is
present, only the Snapshots associated with
these snapshot ids will be returned.

	owner (str [https://docs.python.org/2/library/functions.html#str]) – If present, only the snapshots owned by the specified user
will be returned. Valid values are:

	self

	amazon

	AWS Account ID

	restorable_by (str [https://docs.python.org/2/library/functions.html#str]) – If present, only the snapshots that are restorable
by the specified account id will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list of boto.ec2.snapshot.Snapshot

	Returns:	The requested Snapshot objects

	
get_all_spot_instance_requests(request_ids=None, filters=None)

	Retrieve all the spot instances requests associated with your account.

	Parameters:	
	request_ids (list) – A list of strings of spot instance request IDs

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list

	Returns:	A list of
boto.ec2.spotinstancerequest.SpotInstanceRequest

	
get_all_tags(filters=None)

	Retrieve all the metadata tags associated with your account.

	Parameters:	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	dict

	Returns:	A dictionary containing metadata tags

	
get_all_volumes(volume_ids=None, filters=None)

	Get all Volumes associated with the current credentials.

	Parameters:	
	volume_ids (list) – Optional list of volume ids. If this list
is present, only the volumes associated with
these volume ids will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list of boto.ec2.volume.Volume

	Returns:	The requested Volume objects

	
get_all_zones(zones=None, filters=None)

	Get all Availability Zones associated with the current region.

	Parameters:	
	zones (list) – Optional list of zones. If this list is present,
only the Zones associated with these zone names
will be returned.

	filters (dict) – Optional filters that can be used to limit
the results returned. Filters are provided
in the form of a dictionary consisting of
filter names as the key and filter values
as the value. The set of allowable filter
names/values is dependent on the request
being performed. Check the EC2 API guide
for details.

	Return type:	list of boto.ec2.zone.Zone

	Returns:	The requested Zone objects

	
get_console_output(instance_id)

	Retrieves the console output for the specified instance.

	Parameters:	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance ID of a running instance on the cloud.

	Return type:	boto.ec2.instance.ConsoleOutput

	Returns:	The console output as a ConsoleOutput object

	
get_image(image_id)

	Shortcut method to retrieve a specific image (AMI).

	Parameters:	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – the ID of the Image to retrieve

	Return type:	boto.ec2.image.Image

	Returns:	The EC2 Image specified or None if the image is not found

	
get_image_attribute(image_id, attribute='launchPermission')

	Gets an attribute from an image.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – The Amazon image id for which you want info about

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you need information about.
Valid choices are:
* launchPermission
* productCodes
* blockDeviceMapping

	Return type:	boto.ec2.image.ImageAttribute

	Returns:	An ImageAttribute object representing the value of the
attribute requested

	
get_instance_attribute(instance_id, attribute)

	Gets an attribute from an instance.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The Amazon id of the instance

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you need information about
Valid choices are:

	instanceType|kernel|ramdisk|userData|

	disableApiTermination|

	instanceInitiatedShutdownBehavior|

	rootDeviceName|blockDeviceMapping

	Return type:	boto.ec2.image.InstanceAttribute

	Returns:	An InstanceAttribute object representing the value of the
attribute requested

	
get_key_pair(keyname)

	Convenience method to retrieve a specific keypair (KeyPair).

	Parameters:	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – the ID of the Image to retrieve

	Return type:	boto.ec2.keypair.KeyPair

	Returns:	The KeyPair specified or None if it is not found

	
get_params()

	Returns a dictionary containing the value of of all of the keyword
arguments passed when constructing this connection.

	
get_password_data(instance_id)

	Get encrypted administrator password for a Windows instance.

	Parameters:	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier of the instance to retrieve the
password for.

	
get_snapshot_attribute(snapshot_id, attribute='createVolumePermission')

	Get information about an attribute of a snapshot. Only one attribute
can be specified per call.

	Parameters:	
	snapshot_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the snapshot.

	attribute (str [https://docs.python.org/2/library/functions.html#str]) – The requested attribute. Valid values are:

	createVolumePermission

	Return type:	list of boto.ec2.snapshotattribute.SnapshotAttribute

	Returns:	The requested Snapshot attribute

	
get_spot_datafeed_subscription()

	Return the current spot instance data feed subscription
associated with this account, if any.

	Return type:	boto.ec2.spotdatafeedsubscription.SpotDatafeedSubscription

	Returns:	The datafeed subscription object or None

	
get_spot_price_history(start_time=None, end_time=None, instance_type=None, product_description=None, availability_zone=None)

	Retrieve the recent history of spot instances pricing.

	Parameters:	
	start_time (str [https://docs.python.org/2/library/functions.html#str]) – An indication of how far back to provide price
changes for. An ISO8601 DateTime string.

	end_time (str [https://docs.python.org/2/library/functions.html#str]) – An indication of how far forward to provide price
changes for. An ISO8601 DateTime string.

	instance_type (str [https://docs.python.org/2/library/functions.html#str]) – Filter responses to a particular instance type.

	product_description (str [https://docs.python.org/2/library/functions.html#str]) – Filter responses to a particular platform.
Valid values are currently: “Linux/UNIX”,
“SUSE Linux”, and “Windows”

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – The availability zone for which prices
should be returned

	Return type:	list

	Returns:	A list tuples containing price and timestamp.

	
import_key_pair(key_name, public_key_material)

	mports the public key from an RSA key pair that you created
with a third-party tool.

Supported formats:

	OpenSSH public key format (e.g., the format
in ~/.ssh/authorized_keys)

	Base64 encoded DER format

	SSH public key file format as specified in RFC4716

DSA keys are not supported. Make sure your key generator is
set up to create RSA keys.

Supported lengths: 1024, 2048, and 4096.

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new keypair

	public_key_material (string [https://docs.python.org/2/library/string.html#module-string]) – The public key. You must base64 encode
the public key material before sending
it to AWS.

	Return type:	boto.ec2.keypair.KeyPair

	Returns:	The newly created boto.ec2.keypair.KeyPair.
The material attribute of the new KeyPair object
will contain the the unencrypted PEM encoded RSA private key.

	
modify_image_attribute(image_id, attribute='launchPermission', operation='add', user_ids=None, groups=None, product_codes=None)

	Changes an attribute of an image.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – The image id you wish to change

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you wish to change

	operation (string [https://docs.python.org/2/library/string.html#module-string]) – Either add or remove (this is required for changing
launchPermissions)

	user_ids (list) – The Amazon IDs of users to add/remove attributes

	groups (list) – The groups to add/remove attributes

	product_codes (list) – Amazon DevPay product code. Currently only one
product code can be associated with an AMI. Once
set, the product code cannot be changed or reset.

	
modify_instance_attribute(instance_id, attribute, value)

	Changes an attribute of an instance

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance id you wish to change

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you wish to change.

	AttributeName - Expected value (default)

	instanceType - A valid instance type (m1.small)

	kernel - Kernel ID (None)

	ramdisk - Ramdisk ID (None)

	userData - Base64 encoded String (None)

	disableApiTermination - Boolean (true)

	instanceInitiatedShutdownBehavior - stop|terminate

	rootDeviceName - device name (None)

	value (string [https://docs.python.org/2/library/string.html#module-string]) – The new value for the attribute

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
modify_snapshot_attribute(snapshot_id, attribute='createVolumePermission', operation='add', user_ids=None, groups=None)

	Changes an attribute of an image.

	Parameters:	
	snapshot_id (string [https://docs.python.org/2/library/string.html#module-string]) – The snapshot id you wish to change

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you wish to change. Valid values are:
createVolumePermission

	operation (string [https://docs.python.org/2/library/string.html#module-string]) – Either add or remove (this is required for changing
snapshot ermissions)

	user_ids (list) – The Amazon IDs of users to add/remove attributes

	groups (list) – The groups to add/remove attributes. The only valid
value at this time is ‘all’.

	
monitor_instance(instance_id)

	Deprecated Version, maintained for backward compatibility.
Enable CloudWatch monitoring for the supplied instance.

	Parameters:	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance id

	Return type:	list

	Returns:	A list of boto.ec2.instanceinfo.InstanceInfo

	
monitor_instances(instance_ids)

	Enable CloudWatch monitoring for the supplied instances.

	Parameters:	instance_id (list of strings) – The instance ids

	Return type:	list

	Returns:	A list of boto.ec2.instanceinfo.InstanceInfo

	
purchase_reserved_instance_offering(reserved_instances_offering_id, instance_count=1)

	Purchase a Reserved Instance for use with your account.
** CAUTION **
This request can result in large amounts of money being charged to your
AWS account. Use with caution!

	Parameters:	
	reserved_instances_offering_id (string [https://docs.python.org/2/library/string.html#module-string]) – The offering ID of the Reserved
Instance to purchase

	instance_count (int [https://docs.python.org/2/library/functions.html#int]) – The number of Reserved Instances to purchase.
Default value is 1.

	Return type:	boto.ec2.reservedinstance.ReservedInstance

	Returns:	The newly created Reserved Instance

	
reboot_instances(instance_ids=None)

	Reboot the specified instances.

	Parameters:	instance_ids (list) – The instances to terminate and reboot

	
register_image(name=None, description=None, image_location=None, architecture=None, kernel_id=None, ramdisk_id=None, root_device_name=None, block_device_map=None)

	Register an image.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the AMI. Valid only for EBS-based images.

	description (string [https://docs.python.org/2/library/string.html#module-string]) – The description of the AMI.

	image_location (string [https://docs.python.org/2/library/string.html#module-string]) – Full path to your AMI manifest in
Amazon S3 storage.
Only used for S3-based AMI’s.

	architecture (string [https://docs.python.org/2/library/string.html#module-string]) – The architecture of the AMI. Valid choices are:
i386 | x86_64

	kernel_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the kernel with which to launch
the instances

	root_device_name (string [https://docs.python.org/2/library/string.html#module-string]) – The root device name (e.g. /dev/sdh)

	block_device_map (boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping data structure
describing the EBS volumes associated
with the Image.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The new image id

	
release_address(public_ip=None, allocation_id=None)

	Free up an Elastic IP address.

	Parameters:	
	public_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The public IP address for EC2 elastic IPs.

	allocation_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID for VPC elastic IPs.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
request_spot_instances(price, image_id, count=1, type='one-time', valid_from=None, valid_until=None, launch_group=None, availability_zone_group=None, key_name=None, security_groups=None, user_data=None, addressing_type=None, instance_type='m1.small', placement=None, kernel_id=None, ramdisk_id=None, monitoring_enabled=False, subnet_id=None, block_device_map=None)

	Request instances on the spot market at a particular price.

	Parameters:	
	price (str [https://docs.python.org/2/library/functions.html#str]) – The maximum price of your bid

	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the image to run

	count (int [https://docs.python.org/2/library/functions.html#int]) – The of instances to requested

	type (str [https://docs.python.org/2/library/functions.html#str]) – Type of request. Can be ‘one-time’ or ‘persistent’.
Default is one-time.

	valid_from (str [https://docs.python.org/2/library/functions.html#str]) – Start date of the request. An ISO8601 time string.

	valid_until (str [https://docs.python.org/2/library/functions.html#str]) – End date of the request. An ISO8601 time string.

	launch_group (str [https://docs.python.org/2/library/functions.html#str]) – If supplied, all requests will be fulfilled
as a group.

	availability_zone_group (str [https://docs.python.org/2/library/functions.html#str]) – If supplied, all requests will be
fulfilled within a single
availability zone.

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key pair with which to launch instances

	security_groups (list of strings) – The names of the security groups with which to
associate instances

	user_data (string [https://docs.python.org/2/library/string.html#module-string]) – The user data passed to the launched instances

	instance_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of instance to run:

	m1.small

	m1.large

	m1.xlarge

	c1.medium

	c1.xlarge

	m2.xlarge

	m2.2xlarge

	m2.4xlarge

	cc1.4xlarge

	t1.micro

	placement (string [https://docs.python.org/2/library/string.html#module-string]) – The availability zone in which to launch the instances

	kernel_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the kernel with which to launch the
instances

	ramdisk_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the RAM disk with which to launch the
instances

	monitoring_enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Enable CloudWatch monitoring on the instance.

	subnet_id (string [https://docs.python.org/2/library/string.html#module-string]) – The subnet ID within which to launch the instances
for VPC.

	block_device_map (boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping data structure
describing the EBS volumes associated
with the Image.

	Return type:	Reservation

	Returns:	The boto.ec2.spotinstancerequest.SpotInstanceRequest
associated with the request for machines

	
reset_image_attribute(image_id, attribute='launchPermission')

	Resets an attribute of an AMI to its default value.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the AMI for which an attribute will be described

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute to reset

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
reset_instance_attribute(instance_id, attribute)

	Resets an attribute of an instance to its default value.

	Parameters:	
	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the instance

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute to reset. Valid values are:
kernel|ramdisk

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
reset_snapshot_attribute(snapshot_id, attribute='createVolumePermission')

	Resets an attribute of a snapshot to its default value.

	Parameters:	
	snapshot_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the snapshot

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute to reset

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
revoke_security_group(group_name=None, src_security_group_name=None, src_security_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, group_id=None, src_security_group_group_id=None)

	Remove an existing rule from an existing security group.
You need to pass in either src_security_group_name and
src_security_group_owner_id OR ip_protocol, from_port, to_port,
and cidr_ip. In other words, either you are revoking another
group or you are revoking some ip-based rule.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are removing
the rule from.

	src_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are
revoking access to.

	src_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the security
group you are revoking access to.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are disabling

	to_port (int [https://docs.python.org/2/library/functions.html#int]) – The ending port number you are disabling

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are revoking access to.
See http://goo.gl/Yj5QC

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
revoke_security_group_deprecated(group_name, src_security_group_name=None, src_security_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None)

	
	NOTE: This method uses the old-style request parameters

	that did not allow a port to be specified when
authorizing a group.

Remove an existing rule from an existing security group.
You need to pass in either src_security_group_name and
src_security_group_owner_id OR ip_protocol, from_port, to_port,
and cidr_ip. In other words, either you are revoking another
group or you are revoking some ip-based rule.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are removing
the rule from.

	src_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are
revoking access to.

	src_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the security
group you are revoking access to.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are disabling

	to_port (string [https://docs.python.org/2/library/string.html#module-string]) – The ending port number you are disabling

	to_port – The CIDR block you are revoking access to.
http://goo.gl/Yj5QC

	group_id (string [https://docs.python.org/2/library/string.html#module-string]) – ID of the EC2 or VPC security group to modify.
This is required for VPC security groups and
can be used instead of group_name for EC2
security groups.

	group_id – ID of the EC2 or VPC source security group.
This is required for VPC security groups and
can be used instead of group_name for EC2
security groups.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
revoke_security_group_egress(group_id, ip_protocol, from_port=None, to_port=None, src_group_id=None, cidr_ip=None)

	Remove an existing egress rule from an existing VPC security group.
You need to pass in an ip_protocol, from_port and to_port range only
if the protocol you are using is port-based. You also need to pass in either
a src_group_id or cidr_ip.

	Parameters:	
	group_id – The name of the security group you are removing
the rule from.

	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp | -1

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are disabling

	to_port (int [https://docs.python.org/2/library/functions.html#int]) – The ending port number you are disabling

	src_group_id (src_group_id) – The source security group you are revoking access to.

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are revoking access to.
See http://goo.gl/Yj5QC

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
run_instances(image_id, min_count=1, max_count=1, key_name=None, security_groups=None, user_data=None, addressing_type=None, instance_type='m1.small', placement=None, kernel_id=None, ramdisk_id=None, monitoring_enabled=False, subnet_id=None, block_device_map=None, disable_api_termination=False, instance_initiated_shutdown_behavior=None, private_ip_address=None, placement_group=None, client_token=None, security_group_ids=None)

	Runs an image on EC2.

	Parameters:	
	image_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the image to run

	min_count (int [https://docs.python.org/2/library/functions.html#int]) – The minimum number of instances to launch

	max_count (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of instances to launch

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key pair with which to launch instances

	security_groups (list of strings) – The names of the security groups with which to
associate instances

	user_data (string [https://docs.python.org/2/library/string.html#module-string]) – The user data passed to the launched instances

	instance_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of instance to run:

	m1.small

	m1.large

	m1.xlarge

	c1.medium

	c1.xlarge

	m2.xlarge

	m2.2xlarge

	m2.4xlarge

	cc1.4xlarge

	t1.micro

	placement (string [https://docs.python.org/2/library/string.html#module-string]) – The availability zone in which to launch the instances

	kernel_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the kernel with which to launch the
instances

	ramdisk_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the RAM disk with which to launch the
instances

	monitoring_enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Enable CloudWatch monitoring on the instance.

	subnet_id (string [https://docs.python.org/2/library/string.html#module-string]) – The subnet ID within which to launch the instances
for VPC.

	private_ip_address (string [https://docs.python.org/2/library/string.html#module-string]) – If you’re using VPC, you can optionally use
this parameter to assign the instance a
specific available IP address from the
subnet (e.g., 10.0.0.25).

	block_device_map (boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping data structure
describing the EBS volumes associated
with the Image.

	disable_api_termination (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the instances will be locked
and will not be able to be terminated
via the API.

	instance_initiated_shutdown_behavior (string [https://docs.python.org/2/library/string.html#module-string]) – Specifies whether the
instance stops or
terminates on
instance-initiated
shutdown.
Valid values are:

	stop

	terminate

	placement_group (string [https://docs.python.org/2/library/string.html#module-string]) – If specified, this is the name of the placement
group in which the instance(s) will be launched.

	client_token (string [https://docs.python.org/2/library/string.html#module-string]) – Unique, case-sensitive identifier you provide
to ensure idempotency of the request.
Maximum 64 ASCII characters

	security_group_ids (list of strings) – The ID of the VPC security groups with
which to associate instances

	Return type:	Reservation

	Returns:	The boto.ec2.instance.Reservation associated with
the request for machines

	
start_instances(instance_ids=None)

	Start the instances specified

	Parameters:	instance_ids (list) – A list of strings of the Instance IDs to start

	Return type:	list

	Returns:	A list of the instances started

	
stop_instances(instance_ids=None, force=False)

	Stop the instances specified

	Parameters:	
	instance_ids (list) – A list of strings of the Instance IDs to stop

	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Forces the instance to stop

	Return type:	list

	Returns:	A list of the instances stopped

	
terminate_instances(instance_ids=None)

	Terminate the instances specified

	Parameters:	instance_ids (list) – A list of strings of the Instance IDs to terminate

	Return type:	list

	Returns:	A list of the instances terminated

	
trim_snapshots(hourly_backups=8, daily_backups=7, weekly_backups=4)

	Trim excess snapshots, based on when they were taken. More current
snapshots are retained, with the number retained decreasing as you
move back in time.

If ebs volumes have a ‘Name’ tag with a value, their snapshots
will be assigned the same tag when they are created. The values
of the ‘Name’ tags for snapshots are used by this function to
group snapshots taken from the same volume (or from a series
of like-named volumes over time) for trimming.

For every group of like-named snapshots, this function retains
the newest and oldest snapshots, as well as, by default, the
first snapshots taken in each of the last eight hours, the first
snapshots taken in each of the last seven days, the first snapshots
taken in the last 4 weeks (counting Midnight Sunday morning as
the start of the week), and the first snapshot from the first
Sunday of each month forever.

	Parameters:	
	hourly_backups (int [https://docs.python.org/2/library/functions.html#int]) – How many recent hourly backups should be saved.

	daily_backups (int [https://docs.python.org/2/library/functions.html#int]) – How many recent daily backups should be saved.

	weekly_backups (int [https://docs.python.org/2/library/functions.html#int]) – How many recent weekly backups should be saved.

	
unmonitor_instance(instance_id)

	Deprecated Version, maintained for backward compatibility.
Disable CloudWatch monitoring for the supplied instance.

	Parameters:	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The instance id

	Return type:	list

	Returns:	A list of boto.ec2.instanceinfo.InstanceInfo

	
unmonitor_instances(instance_ids)

	Disable CloudWatch monitoring for the supplied instance.

	Parameters:	instance_id (list of string) – The instance id

	Return type:	list

	Returns:	A list of boto.ec2.instanceinfo.InstanceInfo

boto.ec2.ec2object

Represents an EC2 Object

	
class boto.ec2.ec2object.EC2Object(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.ec2object.TaggedEC2Object(connection=None)

	Any EC2 resource that can be tagged should be represented
by a Python object that subclasses this class. This class
has the mechanism in place to handle the tagSet element in
the Describe* responses. If tags are found, it will create
a TagSet object and allow it to parse and collect the tags
into a dict that is stored in the “tags” attribute of the
object.

	
add_tag(key, value='')

	Add a tag to this object. Tag’s are stored by AWS and can be used
to organize and filter resources. Adding a tag involves a round-trip
to the EC2 service.

	Parameters:	
	key (str [https://docs.python.org/2/library/functions.html#str]) – The key or name of the tag being stored.

	value (str [https://docs.python.org/2/library/functions.html#str]) – An optional value that can be stored with the tag.
If you want only the tag name and no value, the
value should be the empty string.

	
remove_tag(key, value=None)

	Remove a tag from this object. Removing a tag involves a round-trip
to the EC2 service.

	Parameters:	
	key (str [https://docs.python.org/2/library/functions.html#str]) – The key or name of the tag being stored.

	value (str [https://docs.python.org/2/library/functions.html#str]) – An optional value that can be stored with the tag.
If a value is provided, it must match the value
currently stored in EC2. If not, the tag will not
be removed. If a value of None is provided, all
tags with the specified name will be deleted.
NOTE: There is an important distinction between
a value of ‘’ and a value of None.

	
startElement(name, attrs, connection)

	

boto.ec2.elb

See the ELB Reference.

boto.ec2.image

	
class boto.ec2.image.Image(connection=None)

	Represents an EC2 Image

	
deregister(delete_snapshot=False)

	

	
endElement(name, value, connection)

	

	
get_kernel()

	

	
get_launch_permissions()

	

	
get_ramdisk()

	

	
remove_launch_permissions(user_ids=None, group_names=None)

	

	
reset_launch_attributes()

	

	
run(min_count=1, max_count=1, key_name=None, security_groups=None, user_data=None, addressing_type=None, instance_type='m1.small', placement=None, kernel_id=None, ramdisk_id=None, monitoring_enabled=False, subnet_id=None, block_device_map=None, disable_api_termination=False, instance_initiated_shutdown_behavior=None, private_ip_address=None, placement_group=None, security_group_ids=None)

	Runs this instance.

	Parameters:	
	min_count (int [https://docs.python.org/2/library/functions.html#int]) – The minimum number of instances to start

	max_count (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of instances to start

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the keypair to run this instance with.

	security_groups –

	user_data –

	daddressing_type –

	instance_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of instance to run. Current choices are:
m1.small | m1.large | m1.xlarge | c1.medium |
c1.xlarge | m2.xlarge | m2.2xlarge |
m2.4xlarge | cc1.4xlarge

	placement (string [https://docs.python.org/2/library/string.html#module-string]) – The availability zone in which to launch the instances

	kernel_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the kernel with which to launch the instances

	ramdisk_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the RAM disk with which to launch the instances

	monitoring_enabled (bool [https://docs.python.org/2/library/functions.html#bool]) – Enable CloudWatch monitoring on the instance.

	subnet_id (string [https://docs.python.org/2/library/string.html#module-string]) – The subnet ID within which to launch the instances for VPC.

	private_ip_address (string [https://docs.python.org/2/library/string.html#module-string]) – If you’re using VPC, you can optionally use
this parameter to assign the instance a
specific available IP address from the
subnet (e.g., 10.0.0.25).

	block_device_map (boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping data structure
describing the EBS volumes associated
with the Image.

	disable_api_termination (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the instances will be locked
and will not be able to be terminated
via the API.

	instance_initiated_shutdown_behavior (string [https://docs.python.org/2/library/string.html#module-string]) – Specifies whether the instance
stops or terminates on instance-initiated
shutdown. Valid values are:
stop | terminate

	placement_group (string [https://docs.python.org/2/library/string.html#module-string]) – If specified, this is the name of the placement
group in which the instance(s) will be launched.

	security_group_ids –

	Return type:	Reservation

	Returns:	The boto.ec2.instance.Reservation associated with the request for machines

	
set_launch_permissions(user_ids=None, group_names=None)

	

	
startElement(name, attrs, connection)

	

	
update(validate=False)

	Update the image’s state information by making a call to fetch
the current image attributes from the service.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
image the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
class boto.ec2.image.ImageAttribute(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.image.ProductCodes

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.instance

Represents an EC2 Instance

	
class boto.ec2.instance.ConsoleOutput(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instance.Group(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instance.Instance(connection=None)

	
	
confirm_product(product_code)

	

	
endElement(name, value, connection)

	

	
get_attribute(attribute)

	Gets an attribute from this instance.

	Parameters:	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you need information about
Valid choices are:
instanceType|kernel|ramdisk|userData|
disableApiTermination|
instanceInitiatedShutdownBehavior|
rootDeviceName|blockDeviceMapping

	Return type:	boto.ec2.image.InstanceAttribute

	Returns:	An InstanceAttribute object representing the value of the
attribute requested

	
get_console_output()

	Retrieves the console output for the instance.

	Return type:	boto.ec2.instance.ConsoleOutput

	Returns:	The console output as a ConsoleOutput object

	
modify_attribute(attribute, value)

	Changes an attribute of this instance

	Parameters:	
	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute you wish to change.
AttributeName - Expected value (default)
instanceType - A valid instance type (m1.small)
kernel - Kernel ID (None)
ramdisk - Ramdisk ID (None)
userData - Base64 encoded String (None)
disableApiTermination - Boolean (true)
instanceInitiatedShutdownBehavior - stop|terminate
rootDeviceName - device name (None)

	value (string [https://docs.python.org/2/library/string.html#module-string]) – The new value for the attribute

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
monitor()

	

	
reboot()

	

	
reset_attribute(attribute)

	Resets an attribute of this instance to its default value.

	Parameters:	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – The attribute to reset. Valid values are:
kernel|ramdisk

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the operation succeeded or not

	
start()

	Start the instance.

	
startElement(name, attrs, connection)

	

	
stop(force=False)

	Stop the instance

	Parameters:	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Forces the instance to stop

	Return type:	list

	Returns:	A list of the instances stopped

	
terminate()

	Terminate the instance

	
unmonitor()

	

	
update(validate=False)

	Update the instance’s state information by making a call to fetch
the current instance attributes from the service.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
instance the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
use_ip(ip_address)

	

	
class boto.ec2.instance.InstanceAttribute(parent=None)

	
	
ValidValues = ['instanceType', 'kernel', 'ramdisk', 'userData', 'disableApiTermination', 'instanceInitiatedShutdownBehavior', 'rootDeviceName', 'blockDeviceMapping', 'sourceDestCheck', 'groupSet']

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instance.Reservation(connection=None)

	Represents a Reservation response object.

	Variables:	
	id – The unique ID of the Reservation.

	owner_id – The unique ID of the owner of the Reservation.

	groups – A list of Group objects representing the security
groups associated with launched instances.

	instances – A list of Instance objects launched in this
Reservation.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
stop_all()

	

	
class boto.ec2.instance.SubParse(section, parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.instanceinfo

	
class boto.ec2.instanceinfo.InstanceInfo(connection=None, id=None, state=None)

	Represents an EC2 Instance status response from CloudWatch

	Variables:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – The instance’s EC2 ID.

	state (str [https://docs.python.org/2/library/functions.html#str]) – Specifies the current status of the instance.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.instancestatus

	
class boto.ec2.instancestatus.Details

	A dict object that contains name/value pairs which provide
more detailed information about the status of the system
or the instance.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.Event(code=None, description=None, not_before=None, not_after=None)

	A status event for an instance.

	Variables:	
	code [https://docs.python.org/2/library/code.html#module-code] – A string indicating the event type.

	description – A string describing the reason for the event.

	not_before – A datestring describing the earliest time for
the event.

	not_after – A datestring describing the latest time for
the event.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.EventSet

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.InstanceStatus(id=None, zone=None, events=None, state_code=None, state_name=None)

	Represents an EC2 Instance status as reported by
DescribeInstanceStatus request.

	Variables:	
	id – The instance identifier.

	zone – The availability zone of the instance.

	events – A list of events relevant to the instance.

	state_code – An integer representing the current state
of the instance.

	state_name – A string describing the current state
of the instance.

	system_status – A Status object that reports impaired
functionality that stems from issues related to the systems
that support an instance, such as such as hardware failures
and network connectivity problems.

	instance_status – A Status object that reports impaired
functionality that arises from problems internal to the instance.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.InstanceStatusSet(connection=None)

	A list object that contains the results of a call to
DescribeInstanceStatus request. Each element of the
list will be an InstanceStatus object.

	Variables:	next_token – If the response was truncated by
the EC2 service, the next_token attribute of the
object will contain the string that needs to be
passed in to the next request to retrieve the next
set of results.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.instancestatus.Status(status=None, details=None)

	A generic Status object used for system status and instance status.

	Variables:	
	status – A string indicating overall status.

	details – A dict containing name-value pairs which provide
more details about the current status.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.keypair

Represents an EC2 Keypair

	
class boto.ec2.keypair.KeyPair(connection=None)

	
	
copy_to_region(region)

	Create a new key pair of the same new in another region.
Note that the new key pair will use a different ssh
cert than the this key pair. After doing the copy,
you will need to save the material associated with the
new key pair (use the save method) to a local file.

	Parameters:	region (boto.ec2.regioninfo.RegionInfo) – The region to which this security group will be copied.

	Return type:	boto.ec2.keypair.KeyPair

	Returns:	The new key pair

	
delete()

	Delete the KeyPair.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, otherwise False.

	
endElement(name, value, connection)

	

	
save(directory_path)

	Save the material (the unencrypted PEM encoded RSA private key)
of a newly created KeyPair to a local file.

	Parameters:	directory_path (string [https://docs.python.org/2/library/string.html#module-string]) – The fully qualified path to the directory
in which the keypair will be saved. The
keypair file will be named using the name
of the keypair as the base name and .pem
for the file extension. If a file of that
name already exists in the directory, an
exception will be raised and the old file
will not be overwritten.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

boto.ec2.regioninfo

	
class boto.ec2.regioninfo.EC2RegionInfo(connection=None, name=None, endpoint=None)

	Represents an EC2 Region

boto.ec2.reservedinstance

	
class boto.ec2.reservedinstance.ReservedInstance(connection=None, id=None, instance_type=None, availability_zone=None, duration=None, fixed_price=None, usage_price=None, description=None, instance_count=None, state=None)

	
	
endElement(name, value, connection)

	

	
class boto.ec2.reservedinstance.ReservedInstancesOffering(connection=None, id=None, instance_type=None, availability_zone=None, duration=None, fixed_price=None, usage_price=None, description=None)

	
	
describe()

	

	
endElement(name, value, connection)

	

	
purchase(instance_count=1)

	

	
startElement(name, attrs, connection)

	

boto.ec2.securitygroup

Represents an EC2 Security Group

	
class boto.ec2.securitygroup.GroupOrCIDR(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.securitygroup.IPPermissions(parent=None)

	
	
add_grant(name=None, owner_id=None, cidr_ip=None)

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.securitygroup.IPPermissionsList

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.securitygroup.SecurityGroup(connection=None, owner_id=None, name=None, description=None, id=None)

	
	
add_rule(ip_protocol, from_port, to_port, src_group_name, src_group_owner_id, cidr_ip)

	Add a rule to the SecurityGroup object. Note that this method
only changes the local version of the object. No information
is sent to EC2.

	
authorize(ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, src_group=None)

	Add a new rule to this security group.
You need to pass in either src_group_name
OR ip_protocol, from_port, to_port,
and cidr_ip. In other words, either you are authorizing another
group or you are authorizing some ip-based rule.

	Parameters:	
	ip_protocol (string [https://docs.python.org/2/library/string.html#module-string]) – Either tcp | udp | icmp

	from_port (int [https://docs.python.org/2/library/functions.html#int]) – The beginning port number you are enabling

	to_port (int [https://docs.python.org/2/library/functions.html#int]) – The ending port number you are enabling

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are providing access to.
See http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

	src_group (boto.ec2.securitygroup.SecurityGroup or
boto.ec2.securitygroup.GroupOrCIDR) – The Security Group you are granting access to.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
copy_to_region(region, name=None)

	Create a copy of this security group in another region.
Note that the new security group will be a separate entity
and will not stay in sync automatically after the copy
operation.

	Parameters:	
	region (boto.ec2.regioninfo.RegionInfo) – The region to which this security group will be copied.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the copy. If not supplied, the copy
will have the same name as this security group.

	Return type:	boto.ec2.securitygroup.SecurityGroup

	Returns:	The new security group.

	
delete()

	

	
endElement(name, value, connection)

	

	
instances()

	Find all of the current instances that are running within this
security group.

	Return type:	list of boto.ec2.instance.Instance

	Returns:	A list of Instance objects

	
remove_rule(ip_protocol, from_port, to_port, src_group_name, src_group_owner_id, cidr_ip)

	Remove a rule to the SecurityGroup object. Note that this method
only changes the local version of the object. No information
is sent to EC2.

	
revoke(ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, src_group=None)

	

	
startElement(name, attrs, connection)

	

boto.ec2.snapshot

Represents an EC2 Elastic Block Store Snapshot

	
class boto.ec2.snapshot.Snapshot(connection=None)

	
	
AttrName = 'createVolumePermission'

	

	
delete()

	

	
endElement(name, value, connection)

	

	
get_permissions()

	

	
reset_permissions()

	

	
share(user_ids=None, groups=None)

	

	
unshare(user_ids=None, groups=None)

	

	
update(validate=False)

	Update the data associated with this snapshot by querying EC2.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
snapshot the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
class boto.ec2.snapshot.SnapshotAttribute(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.ec2.volume

Represents an EC2 Elastic Block Storage Volume

	
class boto.ec2.volume.AttachmentSet

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.volume.Volume(connection=None)

	
	
attach(instance_id, device)

	Attach this EBS volume to an EC2 instance.

	Parameters:	
	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the EC2 instance to which it will
be attached.

	device (str [https://docs.python.org/2/library/functions.html#str]) – The device on the instance through which the
volume will be exposed (e.g. /dev/sdh)

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
attachment_state()

	Get the attachment state.

	
create_snapshot(description=None)

	Create a snapshot of this EBS Volume.

	Parameters:	description (str [https://docs.python.org/2/library/functions.html#str]) – A description of the snapshot. Limited to 256 characters.

	Return type:	boto.ec2.snapshot.Snapshot

	Returns:	The created Snapshot object

	
delete()

	Delete this EBS volume.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
detach(force=False)

	Detach this EBS volume from an EC2 instance.

	Parameters:	force (bool [https://docs.python.org/2/library/functions.html#bool]) – Forces detachment if the previous detachment attempt did
not occur cleanly. This option can lead to data loss or
a corrupted file system. Use this option only as a last
resort to detach a volume from a failed instance. The
instance will not have an opportunity to flush file system
caches nor file system meta data. If you use this option,
you must perform file system check and repair procedures.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
endElement(name, value, connection)

	

	
snapshots(owner=None, restorable_by=None)

	Get all snapshots related to this volume. Note that this requires
that all available snapshots for the account be retrieved from EC2
first and then the list is filtered client-side to contain only
those for this volume.

	Parameters:	
	owner (str [https://docs.python.org/2/library/functions.html#str]) – If present, only the snapshots owned by the specified user
will be returned. Valid values are:
self | amazon | AWS Account ID

	restorable_by (str [https://docs.python.org/2/library/functions.html#str]) – If present, only the snapshots that are restorable
by the specified account id will be returned.

	Return type:	list of L{boto.ec2.snapshot.Snapshot}

	Returns:	The requested Snapshot objects

	
startElement(name, attrs, connection)

	

	
update(validate=False)

	Update the data associated with this volume by querying EC2.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
volume the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
volume_state()

	Returns the state of the volume. Same value as the status attribute.

boto.ec2.zone

Represents an EC2 Availability Zone

	
class boto.ec2.zone.MessageSet

	A list object that contains messages associated with
an availability zone.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.ec2.zone.Zone(connection=None)

	Represents an Availability Zone.

	Variables:	
	name – The name of the zone.

	state – The current state of the zone.

	region_name – The name of the region the zone is associated with.

	messages – A list of messages related to the zone.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

ECS

boto.ecs

	
class boto.ecs.ECSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host='ecs.amazonaws.com', debug=0, https_connection_factory=None, path='/')

	ECommerce Connection

For more information on how to use this module see:

http://blog.coredumped.org/2010/09/search-for-books-on-amazon-using-boto.html

	
APIVersion = '2010-11-01'

	

	
get_response(action, params, page=0, itemSet=None)

	Utility method to handle calls to ECS and parsing of responses.

	
item_search(search_index, **params)

	Returns items that satisfy the search criteria, including one or more search
indices.

For a full list of search terms,
:see: http://docs.amazonwebservices.com/AWSECommerceService/2010-09-01/DG/index.html?ItemSearch.html

boto.ecs.item

	
class boto.ecs.item.Item(connection=None)

	A single Item

Initialize this Item

	
class boto.ecs.item.ItemSet(connection, action, params, page=0)

	A special ResponseGroup that has built-in paging, and
only creates new Items on the “Item” tag

	
endElement(name, value, connection)

	

	
next()

	Special paging functionality

	
startElement(name, attrs, connection)

	

	
to_xml()

	Override to first fetch everything

	
class boto.ecs.item.ResponseGroup(connection=None, nodename=None)

	A Generic “Response Group”, which can
be anything from the entire list of Items to
specific response elements within an item

Initialize this Item

	
endElement(name, value, connection)

	

	
get(name)

	

	
set(name, value)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

EMR

boto.emr

This module provies an interface to the Elastic MapReduce (EMR)
service from AWS.

boto.emr.connection

Represents a connection to the EMR service

	
class boto.emr.connection.EmrConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/')

	
	
APIVersion = '2009-03-31'

	

	
DebuggingArgs = 's3n://us-east-1.elasticmapreduce/libs/state-pusher/0.1/fetch'

	

	
DebuggingJar = 's3n://us-east-1.elasticmapreduce/libs/script-runner/script-runner.jar'

	

	
DefaultRegionEndpoint = 'elasticmapreduce.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of EmrResponseError

	
add_instance_groups(jobflow_id, instance_groups)

	Adds instance groups to a running cluster.

	Parameters:	
	jobflow_id (str [https://docs.python.org/2/library/functions.html#str]) – The id of the jobflow which will take the
new instance groups

	instance_groups (list(boto.emr.InstanceGroup)) – A list of instance groups to add to the job

	
add_jobflow_steps(jobflow_id, steps)

	Adds steps to a jobflow

	Parameters:	
	jobflow_id (str [https://docs.python.org/2/library/functions.html#str]) – The job flow id

	steps (list(boto.emr.Step)) – A list of steps to add to the job

	
describe_jobflow(jobflow_id)

	Describes a single Elastic MapReduce job flow

	Parameters:	jobflow_id (str [https://docs.python.org/2/library/functions.html#str]) – The job flow id of interest

	
describe_jobflows(states=None, jobflow_ids=None, created_after=None, created_before=None)

	Retrieve all the Elastic MapReduce job flows on your account

	Parameters:	
	states (list) – A list of strings with job flow states wanted

	jobflow_ids (list) – A list of job flow IDs

	created_after (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – Bound on job flow creation time

	created_before (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – Bound on job flow creation time

	
modify_instance_groups(instance_group_ids, new_sizes)

	Modify the number of nodes and configuration settings in an
instance group.

	Parameters:	
	instance_group_ids (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of the ID’s of the instance
groups to be modified

	new_sizes (list(int [https://docs.python.org/2/library/functions.html#int])) – A list of the new sizes for each instance group

	
run_jobflow(name, log_uri, ec2_keyname=None, availability_zone=None, master_instance_type='m1.small', slave_instance_type='m1.small', num_instances=1, action_on_failure='TERMINATE_JOB_FLOW', keep_alive=False, enable_debugging=False, hadoop_version=None, steps=[], bootstrap_actions=[], instance_groups=None, additional_info=None, ami_version='1.0', api_params=None)

	Runs a job flow
:type name: str
:param name: Name of the job flow

	Parameters:	
	log_uri (str [https://docs.python.org/2/library/functions.html#str]) – URI of the S3 bucket to place logs

	ec2_keyname (str [https://docs.python.org/2/library/functions.html#str]) – EC2 key used for the instances

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – EC2 availability zone of the cluster

	master_instance_type (str [https://docs.python.org/2/library/functions.html#str]) – EC2 instance type of the master

	slave_instance_type (str [https://docs.python.org/2/library/functions.html#str]) – EC2 instance type of the slave nodes

	num_instances (int [https://docs.python.org/2/library/functions.html#int]) – Number of instances in the Hadoop cluster

	action_on_failure (str [https://docs.python.org/2/library/functions.html#str]) – Action to take if a step terminates

	keep_alive (bool [https://docs.python.org/2/library/functions.html#bool]) – Denotes whether the cluster should stay
alive upon completion

	enable_debugging (bool [https://docs.python.org/2/library/functions.html#bool]) – Denotes whether AWS console debugging
should be enabled.

	hadoop_version (str [https://docs.python.org/2/library/functions.html#str]) – Version of Hadoop to use. If ami_version
is not set, defaults to ‘0.20’ for backwards compatibility
with older versions of boto.

	steps (list(boto.emr.Step)) – List of steps to add with the job

	bootstrap_actions (list(boto.emr.BootstrapAction)) – List of bootstrap actions that run
before Hadoop starts.

	instance_groups (list(boto.emr.InstanceGroup)) – Optional list of instance groups to
use when creating this job.
NB: When provided, this argument supersedes num_instances
and master/slave_instance_type.

	ami_version (str [https://docs.python.org/2/library/functions.html#str]) – Amazon Machine Image (AMI) version to use
for instances. Values accepted by EMR are ‘1.0’, ‘2.0’, and
‘latest’; EMR currently defaults to ‘1.0’ if you don’t set
‘ami_version’.

	additional_info (JSON str) – A JSON string for selecting additional features

	api_params (dict) – a dictionary of additional parameters to pass
directly to the EMR API (so you don’t have to upgrade boto to
use new EMR features). You can also delete an API parameter
by setting it to None.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The jobflow id

	
set_termination_protection(jobflow_id, termination_protection_status)

	Set termination protection on specified Elastic MapReduce job flows

	Parameters:	
	jobflow_ids (list or str [https://docs.python.org/2/library/functions.html#str]) – A list of job flow IDs

	termination_protection_status (bool [https://docs.python.org/2/library/functions.html#bool]) – Termination protection status

	
terminate_jobflow(jobflow_id)

	Terminate an Elastic MapReduce job flow

	Parameters:	jobflow_id (str [https://docs.python.org/2/library/functions.html#str]) – A jobflow id

	
terminate_jobflows(jobflow_ids)

	Terminate an Elastic MapReduce job flow

	Parameters:	jobflow_ids (list) – A list of job flow IDs

boto.emr.step

	
class boto.emr.step.JarStep(name, jar, main_class=None, action_on_failure='TERMINATE_JOB_FLOW', step_args=None)

	Custom jar step

A elastic mapreduce step that executes a jar

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the step

	jar (str [https://docs.python.org/2/library/functions.html#str]) – S3 URI to the Jar file

	main_class (str [https://docs.python.org/2/library/functions.html#str]) – The class to execute in the jar

	action_on_failure (str [https://docs.python.org/2/library/functions.html#str]) – An action, defined in the EMR docs to take on failure.

	step_args (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of arguments to pass to the step

	
args()

	

	
jar()

	

	
main_class()

	

	
class boto.emr.step.Step

	Jobflow Step base class

	
args()

	

	Return type:	list(str [https://docs.python.org/2/library/functions.html#str])

	Returns:	List of arguments for the step

	
jar()

	

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	URI to the jar

	
main_class()

	

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The main class name

	
class boto.emr.step.StreamingStep(name, mapper, reducer=None, combiner=None, action_on_failure='TERMINATE_JOB_FLOW', cache_files=None, cache_archives=None, step_args=None, input=None, output=None, jar='/home/hadoop/contrib/streaming/hadoop-streaming.jar')

	Hadoop streaming step

A hadoop streaming elastic mapreduce step

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the step

	mapper (str [https://docs.python.org/2/library/functions.html#str]) – The mapper URI

	reducer (str [https://docs.python.org/2/library/functions.html#str]) – The reducer URI

	combiner (str [https://docs.python.org/2/library/functions.html#str]) – The combiner URI. Only works for Hadoop 0.20 and later!

	action_on_failure (str [https://docs.python.org/2/library/functions.html#str]) – An action, defined in the EMR docs to take on failure.

	cache_files (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of cache files to be bundled with the job

	cache_archives (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of jar archives to be bundled with the job

	step_args (list(str [https://docs.python.org/2/library/functions.html#str])) – A list of arguments to pass to the step

	input (str [https://docs.python.org/2/library/functions.html#str] or a list of str) – The input uri

	output (str [https://docs.python.org/2/library/functions.html#str]) – The output uri

	jar (str [https://docs.python.org/2/library/functions.html#str]) – The hadoop streaming jar. This can be either a local path on the master node, or an s3:// URI.

	
args()

	

	
jar()

	

	
main_class()

	

boto.emr.emrobject

This module contains EMR response objects

	
class boto.emr.emrobject.AddInstanceGroupsResponse(connection=None)

	
	
Fields = set(['InstanceGroupIds', 'JobFlowId'])

	

	
class boto.emr.emrobject.Arg(connection=None)

	
	
endElement(name, value, connection)

	

	
class boto.emr.emrobject.BootstrapAction(connection=None)

	
	
Fields = set(['Path', 'Args', 'Name'])

	

	
startElement(name, attrs, connection)

	

	
class boto.emr.emrobject.EmrObject(connection=None)

	
	
Fields = set([])

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.emr.emrobject.InstanceGroup(connection=None)

	
	
Fields = set(['ReadyDateTime', 'InstanceType', 'InstanceRole', 'EndDateTime', 'InstanceRunningCount', 'State', 'BidPrice', 'Market', 'StartDateTime', 'Name', 'InstanceGroupId', 'CreationDateTime', 'InstanceRequestCount', 'LastStateChangeReason', 'LaunchGroup'])

	

	
class boto.emr.emrobject.JobFlow(connection=None)

	
	
Fields = set(['TerminationProtected', 'MasterInstanceId', 'State', 'HadoopVersion', 'LogUri', 'AmiVersion', 'Ec2KeyName', 'ReadyDateTime', 'Type', 'JobFlowId', 'CreationDateTime', 'LastStateChangeReason', 'Name', 'EndDateTime', 'Value', 'InstanceCount', 'RequestId', 'StartDateTime', 'SlaveInstanceType', 'AvailabilityZone', 'MasterPublicDnsName', 'NormalizedInstanceHours', 'MasterInstanceType', 'KeepJobFlowAliveWhenNoSteps', 'Id'])

	

	
startElement(name, attrs, connection)

	

	
class boto.emr.emrobject.KeyValue(connection=None)

	
	
Fields = set(['Value', 'Key'])

	

	
class boto.emr.emrobject.ModifyInstanceGroupsResponse(connection=None)

	
	
Fields = set(['RequestId'])

	

	
class boto.emr.emrobject.RunJobFlowResponse(connection=None)

	
	
Fields = set(['JobFlowId'])

	

	
class boto.emr.emrobject.Step(connection=None)

	
	
Fields = set(['Name', 'EndDateTime', 'Jar', 'ActionOnFailure', 'State', 'MainClass', 'StartDateTime', 'CreationDateTime', 'LastStateChangeReason'])

	

	
startElement(name, attrs, connection)

	

file

boto.file.bucket

	
class boto.file.bucket.Bucket(name, contained_key)

	Instantiate an anonymous file-based Bucket around a single key.

	
delete_key(key_name, headers=None, version_id=None, mfa_token=None)

	Deletes a key from the bucket.

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The key name to delete

	version_id (string [https://docs.python.org/2/library/string.html#module-string]) – Unused in this subclass.

	mfa_token (tuple [https://docs.python.org/2/library/functions.html#tuple] or list of strings) – Unused in this subclass.

	
get_all_keys(headers=None, **params)

	This method returns the single key around which this anonymous Bucket
was instantiated.

	Return type:	SimpleResultSet

	Returns:	The result from file system listing the keys requested

	
get_key(key_name, headers=None, version_id=None, key_type=0)

	Check to see if a particular key exists within the bucket.
Returns: An instance of a Key object or None

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key to retrieve

	version_id (string [https://docs.python.org/2/library/string.html#module-string]) – Unused in this subclass.

	stream_type (integer) – Type of the Key - Regular File or input/output Stream

	Return type:	boto.file.key.Key

	Returns:	A Key object from this bucket.

	
new_key(key_name=None, key_type=0)

	Creates a new key

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key to create

	Return type:	boto.file.key.Key

	Returns:	An instance of the newly created key object

boto.file.simpleresultset

	
class boto.file.simpleresultset.SimpleResultSet(input_list)

	ResultSet facade built from a simple list, rather than via XML parsing.

boto.file.connection

	
class boto.file.connection.FileConnection(file_storage_uri)

	
	
get_bucket(bucket_name, validate=True, headers=None)

	

boto.file.key

	
class boto.file.key.Key(bucket, name, fp=None, key_type=0)

	
	
KEY_REGULAR_FILE = 0

	

	
KEY_STREAM = 3

	

	
KEY_STREAM_READABLE = 1

	

	
KEY_STREAM_WRITABLE = 2

	

	
close()

	Closes fp associated with underlying file.
Caller should call this method when done with this class, to avoid
using up OS resources (e.g., when iterating over a large number
of files).

	
get_contents_as_string(headers=None, cb=None, num_cb=10, torrent=False)

	Retrieve file data from the Key, and return contents as a string.

	Parameters:	
	headers (dict) – ignored in this subclass.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – ignored in this subclass.

	num_cb – ignored in this subclass.

	num_cb – ignored in this subclass.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – ignored in this subclass.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The contents of the file as a string

	
get_file(fp, headers=None, cb=None, num_cb=10, torrent=False)

	Retrieves a file from a Key

	Parameters:	
	fp (file) – File pointer to put the data into

	cb (int [https://docs.python.org/2/library/functions.html#int]) – ignored in this subclass.

	num_cb – ignored in this subclass.

	Param:	ignored in this subclass.

	
is_stream()

	

	
set_contents_from_file(fp, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None)

	Store an object in a file using the name of the Key object as the
key in file URI and the contents of the file pointed to by ‘fp’ as the
contents.

	Parameters:	
	fp (file) – the file whose contents to upload

	headers (dict) – ignored in this subclass.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If this parameter is False, the method
will first check to see if an object exists in the
bucket with the same key. If it does, it won’t
overwrite it. The default value is True which will
overwrite the object.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – ignored in this subclass.

	num_cb – ignored in this subclass.

	policy (boto.s3.acl.CannedACLStrings) – ignored in this subclass.

	md5 (A tuple containing the hexdigest version of the MD5 checksum
of the file as the first element and the Base64-encoded
version of the plain checksum as the second element.
This is the same format returned by the compute_md5 method.) – ignored in this subclass.

fps

boto.fps

boto.fps.connection

	
class boto.fps.connection.FPSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host='fps.sandbox.amazonaws.com', debug=0, https_connection_factory=None, path='/')

	
	
APIVersion = '2007-01-08'

	

	
cancel(transactionId, description=None)

	Cancels a reserved or pending transaction.

	
get_recipient_verification_status(recipientTokenId)

	Test that the intended recipient has a verified Amazon Payments account.

	
get_token_by_caller_reference(callerReference)

	Returns details about the token specified by ‘CallerReference’.

	
get_token_by_caller_token(tokenId)

	Returns details about the token specified by ‘TokenId’.

	
get_transaction_status(transactionId)

	Returns the status of a given transaction.

	
install_caller_instruction(token_type='Unrestricted', transaction_id=None)

	Set us up as a caller
This will install a new caller_token into the FPS section.
This should really only be called to regenerate the caller token.

	
install_payment_instruction(instruction, token_type='Unrestricted', transaction_id=None)

	InstallPaymentInstruction
instruction: The PaymentInstruction to send, for example:

MyRole==’Caller’ orSay ‘Roles do not match’;

token_type: Defaults to “Unrestricted”
transaction_id: Defaults to a new ID

	
install_recipient_instruction(token_type='Unrestricted', transaction_id=None)

	Set us up as a Recipient
This will install a new caller_token into the FPS section.
This should really only be called to regenerate the recipient token.

	
make_marketplace_registration_url(returnURL, pipelineName, maxFixedFee=0.0, maxVariableFee=0.0, recipientPaysFee=True, **params)

	Generate the URL with the signature required for signing up a recipient

	
make_url(returnURL, paymentReason, pipelineName, transactionAmount, **params)

	Generate the URL with the signature required for a transaction

	
pay(transactionAmount, senderTokenId, recipientTokenId=None, callerTokenId=None, chargeFeeTo='Recipient', callerReference=None, senderReference=None, recipientReference=None, senderDescription=None, recipientDescription=None, callerDescription=None, metadata=None, transactionDate=None, reserve=False)

	Make a payment transaction. You must specify the amount.
This can also perform a Reserve request if ‘reserve’ is set to True.

	
refund(callerReference, transactionId, refundAmount=None, callerDescription=None)

	Refund a transaction. This refunds the full amount by default
unless ‘refundAmount’ is specified.

	
settle(reserveTransactionId, transactionAmount=None)

	Charges for a reserved payment.

	
verify_signature(end_point_url, http_parameters)

	

GS

boto.gs.acl

	
class boto.gs.acl.ACL(parent=None)

	
	
acl

	

	
add_email_grant(permission, email_address)

	

	
add_group_email_grant(permission, email_address)

	

	
add_group_grant(permission, group_id)

	

	
add_user_grant(permission, user_id)

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.gs.acl.Entries(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.gs.acl.Entry(scope=None, type=None, id=None, name=None, email_address=None, domain=None, permission=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.gs.acl.Scope(parent, type=None, id=None, name=None, email_address=None, domain=None)

	
	
ALLOWED_SCOPE_TYPE_SUB_ELEMS = {'GroupByDomain': ['Domain'], 'UserByEmail': ['EmailAddress', 'Name'], 'UserById': ['ID', 'Name'], 'AllUsers': [], 'GroupByEmail': ['EmailAddress', 'Name'], 'AllAuthenticatedUsers': [], 'GroupById': ['ID', 'Name']}

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

boto.gs.bucket

	
class boto.gs.bucket.Bucket(connection=None, name=None, key_class=<class 'boto.gs.key.Key'>)

	
	
add_email_grant(permission, email_address, recursive=False, headers=None)

	Convenience method that provides a quick way to add an email grant
to a bucket. This method retrieves the current ACL, creates a new
grant based on the parameters passed in, adds that grant to the ACL
and then PUT’s the new ACL back to GS.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ, WRITE, FULL_CONTROL).

	email_address (string [https://docs.python.org/2/library/string.html#module-string]) – The email address associated with the GS
account your are granting the permission to.

	recursive (boolean) – A boolean value to controls whether the call
will apply the grant to all keys within the bucket
or not. The default value is False. By passing a
True value, the call will iterate through all keys
in the bucket and apply the same grant to each key.
CAUTION: If you have a lot of keys, this could take
a long time!

	
add_group_email_grant(permission, email_address, recursive=False, headers=None)

	Convenience method that provides a quick way to add an email group
grant to a bucket. This method retrieves the current ACL, creates a new
grant based on the parameters passed in, adds that grant to the ACL and
then PUT’s the new ACL back to GS.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
READ|WRITE|FULL_CONTROL
See http://code.google.com/apis/storage/docs/developer-guide.html#authorization
for more details on permissions.

	email_address (string [https://docs.python.org/2/library/string.html#module-string]) – The email address associated with the Google
Group to which you are granting the permission.

	recursive (bool [https://docs.python.org/2/library/functions.html#bool]) – A boolean value to controls whether the call
will apply the grant to all keys within the bucket
or not. The default value is False. By passing a
True value, the call will iterate through all keys
in the bucket and apply the same grant to each key.
CAUTION: If you have a lot of keys, this could take
a long time!

	
add_user_grant(permission, user_id, recursive=False, headers=None)

	Convenience method that provides a quick way to add a canonical user grant to a bucket.
This method retrieves the current ACL, creates a new grant based on the parameters
passed in, adds that grant to the ACL and then PUTs the new ACL back to GS.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ|WRITE|FULL_CONTROL)

	user_id (string [https://docs.python.org/2/library/string.html#module-string]) – The canonical user id associated with the GS account you are granting
the permission to.

	recursive (bool [https://docs.python.org/2/library/functions.html#bool]) – A boolean value to controls whether the call
will apply the grant to all keys within the bucket
or not. The default value is False. By passing a
True value, the call will iterate through all keys
in the bucket and apply the same grant to each key.
CAUTION: If you have a lot of keys, this could take
a long time!

	
disable_logging(headers=None)

	

	
enable_logging(target_bucket, target_prefix=None, headers=None)

	

	
get_acl(key_name='', headers=None, version_id=None)

	returns a bucket’s acl. We include a version_id argument
to support a polymorphic interface for callers, however,
version_id is not relevant for Google Cloud Storage buckets
and is therefore ignored here.

	
get_acl_helper(key_name, headers, query_args)

	provides common functionality for get_acl() and get_def_acl()

	
get_def_acl(key_name='', headers=None)

	returns a bucket’s default object acl

	
list_grants(headers=None)

	

	
set_acl(acl_or_str, key_name='', headers=None, version_id=None)

	sets or changes a bucket’s acl. We include a version_id argument
to support a polymorphic interface for callers, however,
version_id is not relevant for Google Cloud Storage buckets
and is therefore ignored here.

	
set_canned_acl(acl_str, key_name='', headers=None, version_id=None)

	sets or changes a bucket’s acl to a predefined (canned) value.
We include a version_id argument to support a polymorphic
interface for callers, however, version_id is not relevant for
Google Cloud Storage buckets and is therefore ignored here.

	
set_canned_acl_helper(acl_str, key_name, headers, query_args)

	provides common functionality for set_canned_acl() and
set_def_canned_acl()

	
set_def_acl(acl_or_str, key_name='', headers=None)

	sets or changes a bucket’s default object acl

	
set_def_canned_acl(acl_str, key_name='', headers=None)

	sets or changes a bucket’s default object acl to a predefined
(canned) value

	
set_def_xml_acl(acl_str, key_name='', headers=None)

	sets or changes a bucket’s default object

boto.gs.connection

	
class boto.gs.connection.GSConnection(gs_access_key_id=None, gs_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host='commondatastorage.googleapis.com', debug=0, https_connection_factory=None, calling_format=<boto.s3.connection.SubdomainCallingFormat object>, path='/', suppress_consec_slashes=True)

	
	
DefaultHost = 'commondatastorage.googleapis.com'

	

	
QueryString = 'Signature=%s&Expires=%d&AWSAccessKeyId=%s'

	

	
create_bucket(bucket_name, headers=None, location='', policy=None)

	Creates a new bucket. By default it’s located in the USA. You can
pass Location.EU to create an European bucket. You can also pass
a LocationConstraint, which (in addition to locating the bucket
in the specified location) informs Google that Google services
must not copy data out of that location.

	Parameters:	
	bucket_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new bucket

	headers (dict) – Additional headers to pass along with the request to AWS.

	location (boto.gs.connection.Location) – The location of the new bucket

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the new key in S3.

	
class boto.gs.connection.Location

	
	
DEFAULT = ''

	

	
EU = 'EU'

	

boto.gs.key

	
class boto.gs.key.Key(bucket=None, name=None)

	
	
add_email_grant(permission, email_address)

	Convenience method that provides a quick way to add an email grant to a
key. This method retrieves the current ACL, creates a new grant based on
the parameters passed in, adds that grant to the ACL and then PUT’s the
new ACL back to GS.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
READ|FULL_CONTROL
See http://code.google.com/apis/storage/docs/developer-guide.html#authorization
for more details on permissions.

	email_address (string [https://docs.python.org/2/library/string.html#module-string]) – The email address associated with the Google
account to which you are granting the permission.

	
add_group_email_grant(permission, email_address, headers=None)

	Convenience method that provides a quick way to add an email group
grant to a key. This method retrieves the current ACL, creates a new
grant based on the parameters passed in, adds that grant to the ACL and
then PUT’s the new ACL back to GS.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
READ|FULL_CONTROL
See http://code.google.com/apis/storage/docs/developer-guide.html#authorization
for more details on permissions.

	email_address (string [https://docs.python.org/2/library/string.html#module-string]) – The email address associated with the Google
Group to which you are granting the permission.

	
add_group_grant(permission, group_id)

	Convenience method that provides a quick way to add a canonical group
grant to a key. This method retrieves the current ACL, creates a new
grant based on the parameters passed in, adds that grant to the ACL and
then PUT’s the new ACL back to GS.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
READ|FULL_CONTROL
See http://code.google.com/apis/storage/docs/developer-guide.html#authorization
for more details on permissions.

	group_id (string [https://docs.python.org/2/library/string.html#module-string]) – The canonical group id associated with the Google
Groups account you are granting the permission to.

	
add_user_grant(permission, user_id)

	Convenience method that provides a quick way to add a canonical user
grant to a key. This method retrieves the current ACL, creates a new
grant based on the parameters passed in, adds that grant to the ACL and
then PUT’s the new ACL back to GS.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
READ|FULL_CONTROL
See http://code.google.com/apis/storage/docs/developer-guide.html#authorization
for more details on permissions.

	user_id (string [https://docs.python.org/2/library/string.html#module-string]) – The canonical user id associated with the GS account to
which you are granting the permission.

	
set_contents_from_file(fp, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, res_upload_handler=None, size=None)

	Store an object in GS using the name of the Key object as the
key in GS and the contents of the file pointed to by ‘fp’ as the
contents.

	Parameters:	
	fp (file) – the file whose contents are to be uploaded

	headers (dict) – additional HTTP headers to be sent with the PUT request.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If this parameter is False, the method will first check
to see if an object exists in the bucket with the same key. If it
does, it won’t overwrite it. The default value is True which will
overwrite the object.

	cb (function) – a callback function that will be called to report
progress on the upload. The callback should accept two integer
parameters, the first representing the number of bytes that have
been successfully transmitted to GS and the second representing the
total number of bytes that need to be transmitted.

	num_cb (int [https://docs.python.org/2/library/functions.html#int]) – (optional) If a callback is specified with the cb
parameter, this parameter determines the granularity of the callback
by defining the maximum number of times the callback will be called
during the file transfer.

	policy (boto.gs.acl.CannedACLStrings) – A canned ACL policy that will be applied to the new key
in GS.

	md5 (A tuple containing the hexdigest version of the MD5 checksum
of the file as the first element and the Base64-encoded version of
the plain checksum as the second element. This is the same format
returned by the compute_md5 method.) – If you need to compute the MD5 for any reason prior to
upload, it’s silly to have to do it twice so this param, if present,
will be used as the MD5 values of the file. Otherwise, the checksum
will be computed.

	res_upload_handler (ResumableUploadHandler) – If provided, this handler will perform the
upload.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where you are splitting the
file up into different ranges to be uploaded. If not
specified, the default behaviour is to read all bytes
from the file pointer. Less bytes may be available.
Notes:

	The “size” parameter currently cannot be used when
a resumable upload handler is given but is still
useful for uploading part of a file as implemented
by the parent class.

	At present Google Cloud Storage does not support
multipart uploads.

TODO: At some point we should refactor the Bucket and Key classes,
to move functionality common to all providers into a parent class,
and provider-specific functionality into subclasses (rather than
just overriding/sharing code the way it currently works).

	
set_contents_from_filename(filename, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, reduced_redundancy=None, res_upload_handler=None)

	Store an object in GS using the name of the Key object as the
key in GS and the contents of the file named by ‘filename’.
See set_contents_from_file method for details about the
parameters.

	Parameters:	
	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the file that you want to put onto GS

	headers (dict) – Additional headers to pass along with the request to GS.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, replaces the contents of the file if it
already exists.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – (optional) a callback function that will be called to report
progress on the download. The callback should accept two integer
parameters, the first representing the number of bytes that have
been successfully transmitted from GS and the second representing
the total number of bytes that need to be transmitted.

	num_cb – (optional) If a callback is specified with the cb
parameter this parameter determines the granularity of the callback
by defining the maximum number of times the callback will be called
during the file transfer.

	policy (boto.gs.acl.CannedACLStrings) – A canned ACL policy that will be applied to the new key
in GS.

	md5 (A tuple containing the hexdigest version of the MD5 checksum
of the file as the first element and the Base64-encoded version of
the plain checksum as the second element. This is the same format
returned by the compute_md5 method.) – If you need to compute the MD5 for any reason prior to
upload, it’s silly to have to do it twice so this param, if present,
will be used as the MD5 values of the file. Otherwise, the checksum
will be computed.

	res_upload_handler (ResumableUploadHandler) – If provided, this handler will perform the
upload.

	
set_contents_from_string(s, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None)

	Store an object in S3 using the name of the Key object as the
key in S3 and the string ‘s’ as the contents.
See set_contents_from_file method for details about the
parameters.

	Parameters:	
	headers (dict) – Additional headers to pass along with the
request to AWS.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, replaces the contents of the file if
it already exists.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the
new key in S3.

	md5 (A tuple containing the hexdigest version of the MD5
checksum of the file as the first element and the
Base64-encoded version of the plain checksum as the
second element. This is the same format returned by
the compute_md5 method.) – If you need to compute the MD5 for any reason prior
to upload, it’s silly to have to do it twice so this
param, if present, will be used as the MD5 values
of the file. Otherwise, the checksum will be computed.

boto.gs.user

	
class boto.gs.user.User(parent=None, id='', name='')

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml(element_name='Owner')

	

boto.gs.resumable_upload_handler

	
class boto.gs.resumable_upload_handler.ResumableUploadHandler(tracker_file_name=None, num_retries=None)

	Constructor. Instantiate once for each uploaded file.

	Parameters:	
	tracker_file_name (string [https://docs.python.org/2/library/string.html#module-string]) – optional file name to save tracker URI.
If supplied and the current process fails the upload, it can be
retried in a new process. If called with an existing file containing
a valid tracker URI, we’ll resume the upload from this URI; else
we’ll start a new resumable upload (and write the URI to this
tracker file).

	num_retries (int [https://docs.python.org/2/library/functions.html#int]) – the number of times we’ll re-try a resumable upload
making no progress. (Count resets every time we get progress, so
upload can span many more than this number of retries.)

	
BUFFER_SIZE = 8192

	

	
RETRYABLE_EXCEPTIONS = (<class 'httplib.HTTPException'>, <type 'exceptions.IOError'>, <class 'socket.error'>, <class 'socket.gaierror'>)

	

	
SERVER_HAS_NOTHING = (0, -1)

	

	
get_tracker_uri()

	Returns upload tracker URI, or None if the upload has not yet started.

	
send_file(key, fp, headers, cb=None, num_cb=10)

	Upload a file to a key into a bucket on GS, using GS resumable upload
protocol.

	Parameters:	
	key (boto.s3.key.Key or subclass) – The Key object to which data is to be uploaded

	fp (file-like object) – The file pointer to upload

	headers (dict) – The headers to pass along with the PUT request

	cb (function) – a callback function that will be called to report progress on
the upload. The callback should accept two integer parameters, the
first representing the number of bytes that have been successfully
transmitted to GS, and the second representing the total number of
bytes that need to be transmitted.

	num_cb (int [https://docs.python.org/2/library/functions.html#int]) – (optional) If a callback is specified with the cb
parameter, this parameter determines the granularity of the callback
by defining the maximum number of times the callback will be called
during the file transfer. Providing a negative integer will cause
your callback to be called with each buffer read.

Raises ResumableUploadException if a problem occurs during the transfer.

IAM

boto.iam

boto.iam.connection

	
class boto.iam.connection.IAMConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host='iam.amazonaws.com', debug=0, https_connection_factory=None, path='/')

	
	
APIVersion = '2010-05-08'

	

	
add_user_to_group(group_name, user_name)

	Add a user to a group

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The to be added to the group.

	
create_access_key(user_name=None)

	Create a new AWS Secret Access Key and corresponding AWS Access Key ID
for the specified user. The default status for new keys is Active

If the user_name is not specified, the user_name is determined
implicitly based on the AWS Access Key ID used to sign the request.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
create_account_alias(alias)

	Creates a new alias for the AWS account.

For more information on account id aliases, please see
http://goo.gl/ToB7G

	Parameters:	alias (string [https://docs.python.org/2/library/string.html#module-string]) – The alias to attach to the account.

	
create_group(group_name, path='/')

	Create a group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new group

	path (string [https://docs.python.org/2/library/string.html#module-string]) – The path to the group (Optional). Defaults to /.

	
create_login_profile(user_name, password)

	Creates a login profile for the specified user, give the user the
ability to access AWS services and the AWS Management Console.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user

	password (string [https://docs.python.org/2/library/string.html#module-string]) – The new password for the user

	
create_user(user_name, path='/')

	Create a user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new user

	path (string [https://docs.python.org/2/library/string.html#module-string]) – The path in which the user will be created.
Defaults to /.

	
deactivate_mfa_device(user_name, serial_number)

	Deactivates the specified MFA device and removes it from
association with the user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	seriasl_number – The serial number which uniquely identifies
the MFA device.

	
delete_access_key(access_key_id, user_name=None)

	Delete an access key associated with a user.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the access key to be deleted.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
delete_account_alias(alias)

	Deletes an alias for the AWS account.

For more information on account id aliases, please see
http://goo.gl/ToB7G

	Parameters:	alias (string [https://docs.python.org/2/library/string.html#module-string]) – The alias to remove from the account.

	
delete_group(group_name)

	Delete a group. The group must not contain any Users or
have any attached policies

	Parameters:	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group to delete.

	
delete_group_policy(group_name, policy_name)

	Deletes the specified policy document for the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to delete.

	
delete_login_profile(user_name)

	Deletes the login profile associated with the specified user.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user to delete.

	
delete_server_cert(cert_name)

	Delete the specified server certificate.

	Parameters:	cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the server certificate you want
to delete.

	
delete_signing_cert(cert_id, user_name=None)

	Delete a signing certificate associated with a user.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	cert_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the certificate.

	
delete_user(user_name)

	Delete a user including the user’s path, GUID and ARN.

If the user_name is not specified, the user_name is determined
implicitly based on the AWS Access Key ID used to sign the request.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user to delete.

	
delete_user_policy(user_name, policy_name)

	Deletes the specified policy document for the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to delete.

	
enable_mfa_device(user_name, serial_number, auth_code_1, auth_code_2)

	Enables the specified MFA device and associates it with the
specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	seriasl_number – The serial number which uniquely identifies
the MFA device.

	auth_code_1 (string [https://docs.python.org/2/library/string.html#module-string]) – An authentication code emitted by the device.

	auth_code_2 (string [https://docs.python.org/2/library/string.html#module-string]) – A subsequent authentication code emitted
by the device.

	
get_account_alias()

	Get the alias for the current account.

This is referred to in the docs as list_account_aliases,
but it seems you can only have one account alias currently.

For more information on account id aliases, please see
http://goo.gl/ToB7G

	
get_account_summary()

	Get the alias for the current account.

This is referred to in the docs as list_account_aliases,
but it seems you can only have one account alias currently.

For more information on account id aliases, please see
http://goo.gl/ToB7G

	
get_all_access_keys(user_name, marker=None, max_items=None)

	Get all access keys associated with an account.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_group_policies(group_name, marker=None, max_items=None)

	List the names of the policies associated with the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group the policy is associated with.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_groups(path_prefix='/', marker=None, max_items=None)

	List the groups that have the specified path prefix.

	Parameters:	
	path_prefix (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, only groups whose paths match
the provided prefix will be returned.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_mfa_devices(user_name, marker=None, max_items=None)

	Get all MFA devices associated with an account.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_server_certs(path_prefix='/', marker=None, max_items=None)

	Lists the server certificates that have the specified path prefix.
If none exist, the action returns an empty list.

	Parameters:	
	path_prefix (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, only certificates whose paths match
the provided prefix will be returned.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_signing_certs(marker=None, max_items=None, user_name=None)

	Get all signing certificates associated with an account.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
get_all_user_policies(user_name, marker=None, max_items=None)

	List the names of the policies associated with the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user the policy is associated with.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_all_users(path_prefix='/', marker=None, max_items=None)

	List the users that have the specified path prefix.

	Parameters:	
	path_prefix (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, only users whose paths match
the provided prefix will be returned.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_group(group_name, marker=None, max_items=None)

	Return a list of users that are in the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group whose information should
be returned.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_group_policy(group_name, policy_name)

	Retrieves the specified policy document for the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to get.

	
get_groups_for_user(user_name, marker=None, max_items=None)

	List the groups that a specified user belongs to.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user to list groups for.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – Use this only when paginating results and only in
follow-up request after you’ve received a response
where the results are truncated. Set this to the
value of the Marker element in the response you
just received.

	max_items (int [https://docs.python.org/2/library/functions.html#int]) – Use this only when paginating results to indicate
the maximum number of groups you want in the
response.

	
get_login_profiles(user_name)

	Retrieves the login profile for the specified user.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
get_response(action, params, path='/', parent=None, verb='GET', list_marker='Set')

	Utility method to handle calls to IAM and parsing of responses.

	
get_server_certificate(cert_name)

	Retrieves information about the specified server certificate.

	Parameters:	cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the server certificate you want
to retrieve information about.

	
get_signin_url(service='ec2')

	Get the URL where IAM users can use their login profile to sign in
to this account’s console.

	Parameters:	service (string [https://docs.python.org/2/library/string.html#module-string]) – Default service to go to in the console.

	
get_user(user_name=None)

	Retrieve information about the specified user.

If the user_name is not specified, the user_name is determined
implicitly based on the AWS Access Key ID used to sign the request.

	Parameters:	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user to delete.
If not specified, defaults to user making
request.

	
get_user_policy(user_name, policy_name)

	Retrieves the specified policy document for the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to get.

	
put_group_policy(group_name, policy_name, policy_json)

	Adds or updates the specified policy document for the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to get.

	policy_json (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document.

	
put_user_policy(user_name, policy_name, policy_json)

	Adds or updates the specified policy document for the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user the policy is associated with.

	policy_name (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document to get.

	policy_json (string [https://docs.python.org/2/library/string.html#module-string]) – The policy document.

	
remove_user_from_group(group_name, user_name)

	Remove a user from a group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the group

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The user to remove from the group.

	
resync_mfa_device(user_name, serial_number, auth_code_1, auth_code_2)

	Syncronizes the specified MFA device with the AWS servers.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	seriasl_number – The serial number which uniquely identifies
the MFA device.

	auth_code_1 (string [https://docs.python.org/2/library/string.html#module-string]) – An authentication code emitted by the device.

	auth_code_2 (string [https://docs.python.org/2/library/string.html#module-string]) – A subsequent authentication code emitted
by the device.

	
update_access_key(access_key_id, status, user_name=None)

	Changes the status of the specified access key from Active to Inactive
or vice versa. This action can be used to disable a user’s key as
part of a key rotation workflow.

If the user_name is not specified, the user_name is determined
implicitly based on the AWS Access Key ID used to sign the request.

	Parameters:	
	access_key_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the access key.

	status (string [https://docs.python.org/2/library/string.html#module-string]) – Either Active or Inactive.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of user (optional).

	
update_group(group_name, new_group_name=None, new_path=None)

	Updates name and/or path of the specified group.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new group

	new_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the name of the group will be
changed to this name.

	new_path (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the path of the group will be
changed to this path.

	
update_login_profile(user_name, password)

	Resets the password associated with the user’s login profile.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user

	password (string [https://docs.python.org/2/library/string.html#module-string]) – The new password for the user

	
update_server_cert(cert_name, new_cert_name=None, new_path=None)

	Updates the name and/or the path of the specified server certificate.

	Parameters:	
	cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the server certificate that you want
to update.

	new_cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The new name for the server certificate.
Include this only if you are updating the
server certificate’s name.

	new_path (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the path of the certificate will be
changed to this path.

	
update_signing_cert(cert_id, status, user_name=None)

	Change the status of the specified signing certificate from
Active to Inactive or vice versa.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	cert_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the signing certificate

	status (string [https://docs.python.org/2/library/string.html#module-string]) – Either Active or Inactive.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

	
update_user(user_name, new_user_name=None, new_path=None)

	Updates name and/or path of the specified user.

	Parameters:	
	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user

	new_user_name (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the username of the user will be
changed to this username.

	new_path (string [https://docs.python.org/2/library/string.html#module-string]) – If provided, the path of the user will be
changed to this path.

	
upload_server_cert(cert_name, cert_body, private_key, cert_chain=None, path=None)

	Uploads a server certificate entity for the AWS Account.
The server certificate entity includes a public key certificate,
a private key, and an optional certificate chain, which should
all be PEM-encoded.

	Parameters:	
	cert_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name for the server certificate. Do not
include the path in this value.

	cert_body (string [https://docs.python.org/2/library/string.html#module-string]) – The contents of the public key certificate
in PEM-encoded format.

	private_key (string [https://docs.python.org/2/library/string.html#module-string]) – The contents of the private key in
PEM-encoded format.

	cert_chain (string [https://docs.python.org/2/library/string.html#module-string]) – The contents of the certificate chain. This
is typically a concatenation of the PEM-encoded
public key certificates of the chain.

	path (string [https://docs.python.org/2/library/string.html#module-string]) – The path for the server certificate.

	
upload_signing_cert(cert_body, user_name=None)

	Uploads an X.509 signing certificate and associates it with
the specified user.

If the user_name is not specified, it is determined implicitly based
on the AWS Access Key ID used to sign the request.

	Parameters:	
	cert_body (string [https://docs.python.org/2/library/string.html#module-string]) – The body of the signing certificate.

	user_name (string [https://docs.python.org/2/library/string.html#module-string]) – The username of the user

boto.iam.summarymap

	
class boto.iam.summarymap.SummaryMap(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

manage

boto.manage

boto.manage.cmdshell

boto.manage.propget

	
boto.manage.propget.get(prop, choices=None)

	

boto.manage.server

High-level abstraction of an EC2 server

	
class boto.manage.server.Bundler(server, uname='root')

	
	
bundle(bucket=None, prefix=None, key_file=None, cert_file=None, size=None, ssh_key=None, fp=None, clear_history=True)

	

	
bundle_image(prefix, size, ssh_key)

	

	
copy_x509(key_file, cert_file)

	

	
upload_bundle(bucket, prefix, ssh_key)

	

	
class boto.manage.server.CommandLineGetter

	
	
get(cls, params)

	

	
get_ami_id(params)

	

	
get_ami_list()

	

	
get_description(params)

	

	
get_group(params)

	

	
get_instance_type(params)

	

	
get_key(params)

	

	
get_name(params)

	

	
get_quantity(params)

	

	
get_region(params)

	

	
get_zone(params)

	

	
class boto.manage.server.Server(id=None, **kw)

	
	
classmethod add_credentials(cfg, aws_access_key_id, aws_secret_access_key)

	

	
ami_id = None

	

	
console_output = None

	

	
classmethod create(config_file=None, logical_volume=None, cfg=None, **params)

	Create a new instance based on the specified configuration file or the specified
configuration and the passed in parameters.

If the config_file argument is not None, the configuration is read from there.
Otherwise, the cfg argument is used.

The config file may include other config files with a #import reference. The included
config files must reside in the same directory as the specified file.

The logical_volume argument, if supplied, will be used to get the current physical
volume ID and use that as an override of the value specified in the config file. This
may be useful for debugging purposes when you want to debug with a production config
file but a test Volume.

The dictionary argument may be used to override any EC2 configuration values in the
config file.

	
classmethod create_from_current_instances()

	

	
classmethod create_from_instance_id(instance_id, name, description='')

	

	
delete()

	

	
description = None

	

	
elastic_ip = None

	

	
get_bundler(uname='root')

	

	
get_cmdshell()

	

	
get_ssh_client(uname='root', ssh_pwd=None)

	

	
get_ssh_key_file()

	

	
groups = None

	

	
hostname = None

	

	
install(pkg)

	

	
instance_id = None

	

	
instance_type = None

	

	
key_name = None

	

	
launch_time = None

	

	
name = None

	

	
packages = []

	

	
plugins = []

	

	
private_hostname = None

	

	
production = None

	

	
put()

	

	
reboot()

	

	
region_name = None

	

	
reset_cmdshell()

	

	
run(command)

	

	
security_group = None

	

	
status = None

	

	
stop()

	

	
terminate()

	

	
wait()

	

	
zone = None

	

boto.manage.task

	
class boto.manage.task.Task(id=None, **kw)

	A scheduled, repeating task that can be executed by any participating servers.
The scheduling is similar to cron jobs. Each task has an hour attribute.
The allowable values for hour are [0-23|*].

To keep the operation reasonably efficient and not cause excessive polling,
the minimum granularity of a Task is hourly. Some examples:

hour=’*’ - the task would be executed each hour
hour=‘3’ - the task would be executed at 3AM GMT each day.

	
check()

	Determine how long until the next scheduled time for a Task.
Returns the number of seconds until the next scheduled time or zero
if the task needs to be run immediately.
If it’s an hourly task and it’s never been run, run it now.
If it’s a daily task and it’s never been run and the hour is right, run it now.

	
command = None

	

	
hour = None

	

	
last_executed = None

	

	
last_output = None

	

	
last_status = None

	

	
message_id = None

	

	
name = None

	

	
run(msg, vtimeout=60)

	

	
start(queue_name)

	

	
classmethod start_all(queue_name)

	

	
class boto.manage.task.TaskPoller(queue_name)

	
	
poll(wait=60, vtimeout=60)

	

	
boto.manage.task.check_hour(val)

	

boto.manage.volume

	
class boto.manage.volume.CommandLineGetter

	
	
get(cls, params)

	

	
get_device(params)

	

	
get_mount_point(params)

	

	
get_name(params)

	

	
get_region(params)

	

	
get_size(params)

	

	
get_zone(params)

	

	
class boto.manage.volume.Volume(id=None, **kw)

	
	
archive()

	

	
attach(server=None)

	

	
attachment_state = None

	

	
checkfs(use_cmd=None)

	

	
copy(snapshot)

	

	
classmethod create(**params)

	

	
create_from_latest_snapshot(name, size=None)

	

	
create_from_snapshot(name, snapshot, size=None)

	

	
classmethod create_from_volume_id(region_name, volume_id, name)

	

	
delete(delete_ebs_volume=False)

	

	
detach(force=False)

	

	
device = None

	

	
format()

	

	
freeze()

	

	
get_ec2_connection()

	

	
get_snapshot_from_date(date)

	

	
get_snapshot_range(snaps, start_date=None, end_date=None)

	

	
get_snapshots()

	Returns a list of all completed snapshots for this volume ID.

	
grow(size)

	

	
install_xfs()

	

	
make_ready(server)

	

	
mount()

	

	
mount_point = None

	

	
name = None

	

	
past_volume_ids = None

	

	
region_name = None

	

	
server = None

	

	
size = None

	

	
snapshot()

	

	
trim_snapshots(delete=False)

	Trim the number of snapshots for this volume. This method always
keeps the oldest snapshot. It then uses the parameters passed in
to determine how many others should be kept.

The algorithm is to keep all snapshots from the current day. Then
it will keep the first snapshot of the day for the previous seven days.
Then, it will keep the first snapshot of the week for the previous
four weeks. After than, it will keep the first snapshot of the month
for as many months as there are.

	
unfreeze()

	

	
volume_id = None

	

	
volume_state = None

	

	
wait()

	

	
zone_name = None

	

mturk

boto.mturk

boto.mturk.connection

	
class boto.mturk.connection.Assignment(connection)

	Class to extract an Assignment structure from a response (used in
ResultSet)

Will have attributes named as per the Developer Guide,
e.g. AssignmentId, WorkerId, HITId, Answer, etc

	
endElement(name, value, connection)

	

	
class boto.mturk.connection.BaseAutoResultElement(connection)

	Base class to automatically add attributes when parsing XML

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.mturk.connection.HIT(connection)

	Class to extract a HIT structure from a response (used in ResultSet)

Will have attributes named as per the Developer Guide,
e.g. HITId, HITTypeId, CreationTime

	
expired

	Has this HIT expired yet?

	
class boto.mturk.connection.MTurkConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host=None, debug=0, https_connection_factory=None)

	
	
APIVersion = '2008-08-02'

	

	
approve_assignment(assignment_id, feedback=None)

	

	
assign_qualification(qualification_type_id, worker_id, value=1, send_notification=True)

	

	
block_worker(worker_id, reason)

	Block a worker from working on my tasks.

	
change_hit_type_of_hit(hit_id, hit_type)

	Change the HIT type of an existing HIT. Note that the reward associated
with the new HIT type must match the reward of the current HIT type in
order for the operation to be valid.

	
create_hit(hit_type=None, question=None, lifetime=datetime.timedelta(7), max_assignments=1, title=None, description=None, keywords=None, reward=None, duration=datetime.timedelta(7), approval_delay=None, annotation=None, questions=None, qualifications=None, response_groups=None)

	Creates a new HIT.
Returns a ResultSet
See: http://docs.amazonwebservices.com/AWSMechanicalTurkRequester/2006-10-31/ApiReference_CreateHITOperation.html

	
create_qualification_type(name, description, status, keywords=None, retry_delay=None, test=None, answer_key=None, answer_key_xml=None, test_duration=None, auto_granted=False, auto_granted_value=1)

	Create a new Qualification Type.

	name: This will be visible to workers and must be unique for a

	given requester.

description: description shown to workers. Max 2000 characters.

status: ‘Active’ or ‘Inactive’

	keywords: list of keyword strings or comma separated string.

	Max length of 1000 characters when concatenated with commas.

	retry_delay: number of seconds after requesting a

	qualification the worker must wait before they can ask again.
If not specified, workers can only request this qualification
once.

test: a QuestionForm

	answer_key: an XML string of your answer key, for automatically

	scored qualification tests.
(Consider implementing an AnswerKey class for this to support.)

test_duration: the number of seconds a worker has to complete the test.

	auto_granted: if True, requests for the Qualification are granted

	immediately. Can’t coexist with a test.

auto_granted_value: auto_granted qualifications are given this value.

	
disable_hit(hit_id, response_groups=None)

	Remove a HIT from the Mechanical Turk marketplace, approves all
submitted assignments that have not already been approved or rejected,
and disposes of the HIT and all assignment data.

Assignments for the HIT that have already been submitted, but not yet
approved or rejected, will be automatically approved. Assignments in
progress at the time of the call to DisableHIT will be approved once
the assignments are submitted. You will be charged for approval of
these assignments. DisableHIT completely disposes of the HIT and
all submitted assignment data. Assignment results data cannot be
retrieved for a HIT that has been disposed.

It is not possible to re-enable a HIT once it has been disabled.
To make the work from a disabled HIT available again, create a new HIT.

	
dispose_hit(hit_id)

	Dispose of a HIT that is no longer needed.

Only HITs in the “reviewable” state, with all submitted
assignments approved or rejected, can be disposed. A Requester
can call GetReviewableHITs to determine which HITs are
reviewable, then call GetAssignmentsForHIT to retrieve the
assignments. Disposing of a HIT removes the HIT from the
results of a call to GetReviewableHITs.

	
dispose_qualification_type(qualification_type_id)

	TODO: Document.

	
static duration_as_seconds(duration)

	

	
expire_hit(hit_id)

	Expire a HIT that is no longer needed.

The effect is identical to the HIT expiring on its own. The
HIT no longer appears on the Mechanical Turk web site, and no
new Workers are allowed to accept the HIT. Workers who have
accepted the HIT prior to expiration are allowed to complete
it or return it, or allow the assignment duration to elapse
(abandon the HIT). Once all remaining assignments have been
submitted, the expired HIT becomes”reviewable”, and will be
returned by a call to GetReviewableHITs.

	
extend_hit(hit_id, assignments_increment=None, expiration_increment=None)

	Increase the maximum number of assignments, or extend the
expiration date, of an existing HIT.

NOTE: If a HIT has a status of Reviewable and the HIT is
extended to make it Available, the HIT will not be returned by
GetReviewableHITs, and its submitted assignments will not be
returned by GetAssignmentsForHIT, until the HIT is Reviewable
again. Assignment auto-approval will still happen on its
original schedule, even if the HIT has been extended. Be sure
to retrieve and approve (or reject) submitted assignments
before extending the HIT, if so desired.

	
get_account_balance()

	

	
get_all_hits()

	Return all of a Requester’s HITs

Despite what search_hits says, it does not return all hits, but
instead returns a page of hits. This method will pull the hits
from the server 100 at a time, but will yield the results
iteratively, so subsequent requests are made on demand.

	
get_assignments(hit_id, status=None, sort_by='SubmitTime', sort_direction='Ascending', page_size=10, page_number=1, response_groups=None)

	Retrieves completed assignments for a HIT.
Use this operation to retrieve the results for a HIT.

The returned ResultSet will have the following attributes:

	NumResults

	The number of assignments on the page in the filtered results
list, equivalent to the number of assignments being returned
by this call.
A non-negative integer

	PageNumber

	The number of the page in the filtered results list being
returned.
A positive integer

	TotalNumResults

	The total number of HITs in the filtered results list based
on this call.
A non-negative integer

The ResultSet will contain zero or more Assignment objects

	
get_help(about, help_type='Operation')

	Return information about the Mechanical Turk Service
operations and response group NOTE - this is basically useless
as it just returns the URL of the documentation

help_type: either ‘Operation’ or ‘ResponseGroup’

	
get_hit(hit_id, response_groups=None)

	

	
static get_keywords_as_string(keywords)

	Returns a comma+space-separated string of keywords from either
a list or a string

	
static get_price_as_price(reward)

	Returns a Price data structure from either a float or a Price

	
get_qualification_requests(qualification_type_id, sort_by='Expiration', sort_direction='Ascending', page_size=10, page_number=1)

	TODO: Document.

	
get_qualification_score(qualification_type_id, worker_id)

	TODO: Document.

	
get_qualification_type(qualification_type_id)

	

	
get_qualifications_for_qualification_type(qualification_type_id)

	

	
get_reviewable_hits(hit_type=None, status='Reviewable', sort_by='Expiration', sort_direction='Ascending', page_size=10, page_number=1)

	Retrieve the HITs that have a status of Reviewable, or HITs that
have a status of Reviewing, and that belong to the Requester
calling the operation.

	
grant_bonus(worker_id, assignment_id, bonus_price, reason)

	Issues a payment of money from your account to a Worker. To
be eligible for a bonus, the Worker must have submitted
results for one of your HITs, and have had those results
approved or rejected. This payment happens separately from the
reward you pay to the Worker when you approve the Worker’s
assignment. The Bonus must be passed in as an instance of the
Price object.

	
grant_qualification(qualification_request_id, integer_value=1)

	TODO: Document.

	
notify_workers(worker_ids, subject, message_text)

	Send a text message to workers.

	
register_hit_type(title, description, reward, duration, keywords=None, approval_delay=None, qual_req=None)

	Register a new HIT Type
title, description are strings
reward is a Price object
duration can be a timedelta, or an object castable to an int

	
reject_assignment(assignment_id, feedback=None)

	

	
revoke_qualification(subject_id, qualification_type_id, reason=None)

	TODO: Document.

	
search_hits(sort_by='CreationTime', sort_direction='Ascending', page_size=10, page_number=1, response_groups=None)

	Return a page of a Requester’s HITs, on behalf of the Requester.
The operation returns HITs of any status, except for HITs that
have been disposed with the DisposeHIT operation.
Note:
The SearchHITs operation does not accept any search parameters
that filter the results.

	
search_qualification_types(query=None, sort_by='Name', sort_direction='Ascending', page_size=10, page_number=1, must_be_requestable=True, must_be_owned_by_caller=True)

	TODO: Document.

	
set_email_notification(hit_type, email, event_types=None)

	Performs a SetHITTypeNotification operation to set email
notification for a specified HIT type

	
set_rest_notification(hit_type, url, event_types=None)

	Performs a SetHITTypeNotification operation to set REST notification
for a specified HIT type

	
set_reviewing(hit_id, revert=None)

	Update a HIT with a status of Reviewable to have a status of Reviewing,
or reverts a Reviewing HIT back to the Reviewable status.

Only HITs with a status of Reviewable can be updated with a status of
Reviewing. Similarly, only Reviewing HITs can be reverted back to a
status of Reviewable.

	
unblock_worker(worker_id, reason)

	Unblock a worker from working on my tasks.

	
update_qualification_score(qualification_type_id, worker_id, value)

	TODO: Document.

	
update_qualification_type(qualification_type_id, description=None, status=None, retry_delay=None, test=None, answer_key=None, test_duration=None, auto_granted=None, auto_granted_value=None)

	

	
exception boto.mturk.connection.MTurkRequestError(status, reason, body=None)

	Error for MTurk Requests

	
class boto.mturk.connection.Qualification(connection)

	Class to extract an Qualification structure from a response (used in
ResultSet)

Will have attributes named as per the Developer Guide such as
QualificationTypeId, IntegerValue. Does not seem to contain GrantTime.

	
class boto.mturk.connection.QualificationRequest(connection)

	Class to extract an QualificationRequest structure from a response (used in
ResultSet)

Will have attributes named as per the Developer Guide,
e.g. QualificationRequestId, QualificationTypeId, SubjectId, etc

	TODO: Ensure that Test and Answer attribute are treated properly if the

	qualification requires a test. These attributes are XML-encoded.

	
class boto.mturk.connection.QualificationType(connection)

	Class to extract an QualificationType structure from a response (used in
ResultSet)

Will have attributes named as per the Developer Guide,
e.g. QualificationTypeId, CreationTime, Name, etc

	
class boto.mturk.connection.QuestionFormAnswer(connection)

	Class to extract Answers from inside the embedded XML
QuestionFormAnswers element inside the Answer element which is
part of the Assignment structure

A QuestionFormAnswers element contains an Answer element for each
question in the HIT or Qualification test for which the Worker
provided an answer. Each Answer contains a QuestionIdentifier
element whose value corresponds to the QuestionIdentifier of a
Question in the QuestionForm. See the QuestionForm data structure
for more information about questions and answer specifications.

If the question expects a free-text answer, the Answer element
contains a FreeText element. This element contains the Worker’s
answer

NOTE - currently really only supports free-text and selection answers

	
endElement(name, value, connection)

	

boto.mturk.notification

Provides NotificationMessage and Event classes, with utility methods, for
implementations of the Mechanical Turk Notification API.

	
class boto.mturk.notification.Event(d)

	

	
class boto.mturk.notification.NotificationMessage(d)

	Constructor; expects parameter d to be a dict of string parameters from a REST transport notification message

	
EVENT_PATTERN = 'Event\\.(?P<n>\\d+)\\.(?P<param>\\w+)'

	

	
EVENT_RE = <_sre.SRE_Pattern object>

	

	
NOTIFICATION_VERSION = '2006-05-05'

	

	
NOTIFICATION_WSDL = 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurk/2006-05-05/AWSMechanicalTurkRequesterNotification.wsdl'

	

	
OPERATION_NAME = 'Notify'

	

	
SERVICE_NAME = 'AWSMechanicalTurkRequesterNotification'

	

	
verify(secret_key)

	Verifies the authenticity of a notification message.

	TODO: This is doing a form of authentication and

	this functionality should really be merged
with the pluggable authentication mechanism
at some point.

boto.mturk.price

	
class boto.mturk.price.Price(amount=0.0, currency_code='USD')

	
	
endElement(name, value, connection)

	

	
get_as_params(label, ord=1)

	

	
startElement(name, attrs, connection)

	

boto.mturk.qualification

	
class boto.mturk.qualification.AdultRequirement(comparator, integer_value, required_to_preview=False)

	Requires workers to acknowledge that they are over 18 and that they agree to work on potentially offensive content. The value type is boolean, 1 (required), 0 (not required, the default).

	
class boto.mturk.qualification.LocaleRequirement(comparator, locale, required_to_preview=False)

	A Qualification requirement based on the Worker’s location. The Worker’s location is specified by the Worker to Mechanical Turk when the Worker creates his account.

	
get_as_params()

	

	
class boto.mturk.qualification.NumberHitsApprovedRequirement(comparator, integer_value, required_to_preview=False)

	Specifies the total number of HITs submitted by a Worker that have been approved. The value is an integer greater than or equal to 0.

	
class boto.mturk.qualification.PercentAssignmentsAbandonedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has abandoned (allowed the deadline to elapse), over all assignments the Worker has accepted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.PercentAssignmentsApprovedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has submitted that were subsequently approved by the Requester, over all assignments the Worker has submitted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.PercentAssignmentsRejectedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has submitted that were subsequently rejected by the Requester, over all assignments the Worker has submitted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.PercentAssignmentsReturnedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has returned, over all assignments the Worker has accepted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.PercentAssignmentsSubmittedRequirement(comparator, integer_value, required_to_preview=False)

	The percentage of assignments the Worker has submitted, over all assignments the Worker has accepted. The value is an integer between 0 and 100.

	
class boto.mturk.qualification.Qualifications(requirements=None)

	
	
add(req)

	

	
get_as_params()

	

	
class boto.mturk.qualification.Requirement(qualification_type_id, comparator, integer_value=None, required_to_preview=False)

	Representation of a single requirement

	
get_as_params()

	

boto.mturk.question

	
class boto.mturk.question.AnswerSpecification(spec)

	
	
get_as_xml()

	

	
template = '<AnswerSpecification>%(spec)s</AnswerSpecification>'

	

	
class boto.mturk.question.Application(width, height, **parameters)

	
	
get_as_xml()

	

	
get_inner_content(content)

	

	
parameter_template = '<Name>%(name)s</Name><Value>%(value)s</Value>'

	

	
template = '<Application><%(class_)s>%(content)s</%(class_)s></Application>'

	

	
class boto.mturk.question.Binary(type, subtype, url, alt_text)

	
	
template = '<Binary><MimeType><Type>%(type)s</Type><SubType>%(subtype)s</SubType></MimeType><DataURL>%(url)s</DataURL><AltText>%(alt_text)s</AltText></Binary>'

	

	
class boto.mturk.question.Constraint

	
	
get_as_xml()

	

	
get_attributes()

	

	
class boto.mturk.question.Constraints

	
	
get_as_xml()

	

	
template = '<Constraints>%(content)s</Constraints>'

	

	
class boto.mturk.question.ExternalQuestion(external_url, frame_height)

	An object for constructing an External Question.

	
get_as_params(label='ExternalQuestion')

	

	
get_as_xml()

	

	
schema_url = 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2006-07-14/ExternalQuestion.xsd'

	

	
template = '<ExternalQuestion xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2006-07-14/ExternalQuestion.xsd"><ExternalURL>%(external_url)s</ExternalURL><FrameHeight>%(frame_height)s</FrameHeight></ExternalQuestion>'

	

	
class boto.mturk.question.FileUploadAnswer(min_bytes, max_bytes)

	
	
get_as_xml()

	

	
template = '<FileUploadAnswer><MinFileSizeInBytes>%(min_bytes)d</MinFileSizeInBytes><MaxFileSizeInBytes>%(max_bytes)d</MaxFileSizeInBytes></FileUploadAnswer>'

	

	
class boto.mturk.question.Flash(url, *args, **kwargs)

	
	
get_inner_content(content)

	

	
class boto.mturk.question.FormattedContent(content)

	
	
schema_url = 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2006-07-14/FormattedContentXHTMLSubset.xsd'

	

	
template = '<FormattedContent><![CDATA[%(content)s]]></FormattedContent>'

	

	
class boto.mturk.question.FreeTextAnswer(default=None, constraints=None, num_lines=None)

	
	
get_as_xml()

	

	
template = '<FreeTextAnswer>%(items)s</FreeTextAnswer>'

	

	
class boto.mturk.question.JavaApplet(path, filename, *args, **kwargs)

	
	
get_inner_content(content)

	

	
class boto.mturk.question.LengthConstraint(min_length=None, max_length=None)

	
	
attribute_names = ('minLength', 'maxLength')

	

	
template = '<Length %(attrs)s />'

	

	
class boto.mturk.question.List

	A bulleted list suitable for OrderedContent or Overview content

	
get_as_xml()

	

	
class boto.mturk.question.NumberOfLinesSuggestion(num_lines=1)

	
	
get_as_xml()

	

	
template = '<NumberOfLinesSuggestion>%(num_lines)s</NumberOfLinesSuggestion>'

	

	
class boto.mturk.question.NumericConstraint(min_value=None, max_value=None)

	
	
attribute_names = ('minValue', 'maxValue')

	

	
template = '<IsNumeric %(attrs)s />'

	

	
class boto.mturk.question.OrderedContent

	
	
append_field(field, value)

	

	
get_as_xml()

	

	
class boto.mturk.question.Overview

	
	
get_as_params(label='Overview')

	

	
get_as_xml()

	

	
template = '<Overview>%(content)s</Overview>'

	

	
class boto.mturk.question.Question(identifier, content, answer_spec, is_required=False, display_name=None)

	
	
get_as_params(label='Question')

	

	
get_as_xml()

	

	
template = '<Question>%(items)s</Question>'

	

	
class boto.mturk.question.QuestionContent

	
	
get_as_xml()

	

	
template = '<QuestionContent>%(content)s</QuestionContent>'

	

	
class boto.mturk.question.QuestionForm

	From the AMT API docs:

The top-most element of the QuestionForm data structure is a
QuestionForm element. This element contains optional Overview
elements and one or more Question elements. There can be any
number of these two element types listed in any order. The
following example structure has an Overview element and a
Question element followed by a second Overview element and
Question element–all within the same QuestionForm.

<QuestionForm xmlns="[the QuestionForm schema URL]">
 <Overview>
 [...]
 </Overview>
 <Question>
 [...]
 </Question>
 <Overview>
 [...]
 </Overview>
 <Question>
 [...]
 </Question>
 [...]
</QuestionForm>

QuestionForm is implemented as a list, so to construct a
QuestionForm, simply append Questions and Overviews (with at least
one Question).

	
get_as_xml()

	

	
is_valid()

	

	
schema_url = 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2005-10-01/QuestionForm.xsd'

	

	
xml_template = '<QuestionForm xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2005-10-01/QuestionForm.xsd">%(items)s</QuestionForm>'

	

	
class boto.mturk.question.RegExConstraint(pattern, error_text=None, flags=None)

	
	
attribute_names = ('regex', 'errorText', 'flags')

	

	
template = '<AnswerFormatRegex %(attrs)s />'

	

	
class boto.mturk.question.SelectionAnswer(min=1, max=1, style=None, selections=None, type='text', other=False)

	A class to generate SelectionAnswer XML data structures.
Does not yet implement Binary selection options.

	
ACCEPTED_STYLES = ['radiobutton', 'dropdown', 'checkbox', 'list', 'combobox', 'multichooser']

	

	
MAX_SELECTION_COUNT_XML_TEMPLATE = '<MaxSelectionCount>%s</MaxSelectionCount>'

	

	
MIN_SELECTION_COUNT_XML_TEMPLATE = '<MinSelectionCount>%s</MinSelectionCount>'

	

	
OTHER_SELECTION_ELEMENT_NAME = 'OtherSelection'

	

	
SELECTIONANSWER_XML_TEMPLATE = '<SelectionAnswer>%s%s<Selections>%s</Selections></SelectionAnswer>'

	

	
SELECTION_VALUE_XML_TEMPLATE = '<%s>%s</%s>'

	

	
SELECTION_XML_TEMPLATE = '<Selection><SelectionIdentifier>%s</SelectionIdentifier>%s</Selection>'

	

	
STYLE_XML_TEMPLATE = '<StyleSuggestion>%s</StyleSuggestion>'

	

	
get_as_xml()

	

	
class boto.mturk.question.SimpleField(field, value)

	A Simple name/value pair that can be easily rendered as XML.

>>> SimpleField('Text', 'A text string').get_as_xml()
'<Text>A text string</Text>'

	
template = '<%(field)s>%(value)s</%(field)s>'

	

	
class boto.mturk.question.ValidatingXML

	
	
validate()

	

	
class boto.mturk.question.XMLTemplate

	
	
get_as_xml()

	

pyami

boto.pyami

boto.pyami.bootstrap

	
class boto.pyami.bootstrap.Bootstrap

	The Bootstrap class is instantiated and run as part of the PyAMI
instance initialization process. The methods in this class will
be run from the rc.local script of the instance and will be run
as the root user.

The main purpose of this class is to make sure the boto distribution
on the instance is the one required.

	
create_working_dir()

	

	
fetch_s3_file(s3_file)

	

	
load_boto()

	

	
load_packages()

	

	
main()

	

	
write_metadata()

	

boto.pyami.config

	
class boto.pyami.config.Config(path=None, fp=None, do_load=True)

	
	
dump()

	

	
dump_safe(fp=None)

	

	
dump_to_sdb(domain_name, item_name)

	

	
get(section, name, default=None)

	

	
get_instance(name, default=None)

	

	
get_user(name, default=None)

	

	
get_value(section, name, default=None)

	

	
getbool(section, name, default=False)

	

	
getfloat(section, name, default=0.0)

	

	
getint(section, name, default=0)

	

	
getint_user(name, default=0)

	

	
load_credential_file(path)

	Load a credential file as is setup like the Java utilities

	
load_from_path(path)

	

	
load_from_sdb(domain_name, item_name)

	

	
save_option(path, section, option, value)

	Write the specified Section.Option to the config file specified by path.
Replace any previous value. If the path doesn’t exist, create it.
Also add the option the the in-memory config.

	
save_system_option(section, option, value)

	

	
save_user_option(section, option, value)

	

	
setbool(section, name, value)

	

boto.pyami.copybot

	
class boto.pyami.copybot.CopyBot

	
	
copy_bucket_acl()

	

	
copy_key_acl(src, dst)

	

	
copy_keys()

	

	
copy_log()

	

	
main()

	

boto.pyami.installers

	
class boto.pyami.installers.Installer(config_file=None)

	Abstract base class for installers

	
add_cron(name, minute, hour, mday, month, wday, who, command, env=None)

	Add an entry to the system crontab.

	
add_env(key, value)

	Add an environemnt variable

	
add_init_script(file)

	Add this file to the init.d directory

	
install()

	Do whatever is necessary to “install” the package.

	
start(service_name)

	Start a service.

	
stop(service_name)

	Stop a service.

boto.pyami.installers.ubuntu

boto.pyami.installers.ubuntu.apache

	
class boto.pyami.installers.ubuntu.apache.Apache(config_file=None)

	Install apache2, mod_python, and libapache2-svn

	
install()

	

	
main()

	

boto.pyami.installers.ubuntu.ebs

Automated installer to attach, format and mount an EBS volume.
This installer assumes that you want the volume formatted as
an XFS file system. To drive this installer, you need the
following section in the boto config passed to the new instance.
You also need to install dateutil by listing python-dateutil
in the list of packages to be installed in the Pyami seciont
of your boto config file.

If there is already a device mounted at the specified mount point,
the installer assumes that it is the ephemeral drive and unmounts
it, remounts it as /tmp and chmods it to 777.

Config file section:

[EBS]
volume_id = <the id of the EBS volume, should look like vol-xxxxxxxx>
logical_volume_name = <the name of the logical volume that contaings
 a reference to the physical volume to be mounted. If this parameter
 is supplied, it overrides the volume_id setting.>
device = <the linux device the EBS volume should be mounted on>
mount_point = <directory to mount device, defaults to /ebs>

	
class boto.pyami.installers.ubuntu.ebs.EBSInstaller(config_file=None)

	Set up the EBS stuff

	
attach()

	

	
create_backup_cleanup_script(use_tag_based_cleanup=False)

	

	
create_backup_script()

	

	
handle_mount_point()

	

	
install()

	

	
main()

	

	
make_fs()

	

	
update_fstab()

	

boto.pyami.installers.ubuntu.installer

	
class boto.pyami.installers.ubuntu.installer.Installer(config_file=None)

	Base Installer class for Ubuntu-based AMI’s

	
add_cron(name, command, minute='*', hour='*', mday='*', month='*', wday='*', who='root', env=None)

	
	Write a file to /etc/cron.d to schedule a command

	env is a dict containing environment variables you want to set in the file
name will be used as the name of the file

	
add_env(key, value)

	Add an environemnt variable
For Ubuntu, the best place is /etc/environment. Values placed here do
not need to be exported.

	
add_init_script(file, name)

	Add this file to the init.d directory

	
create_user(user)

	Create a user on the local system

	
install()

	This is the only method you need to override

	
start(service_name)

	

	
stop(service_name)

	

boto.pyami.installers.ubuntu.mysql

This installer will install mysql-server on an Ubuntu machine.
In addition to the normal installation done by apt-get, it will
also configure the new MySQL server to store it’s data files in
a different location. By default, this is /mnt but that can be
configured in the [MySQL] section of the boto config file passed
to the instance.

	
class boto.pyami.installers.ubuntu.mysql.MySQL(config_file=None)

	
	
change_data_dir(password=None)

	

	
install()

	

	
main()

	

boto.pyami.installers.ubuntu.trac

	
class boto.pyami.installers.ubuntu.trac.Trac(config_file=None)

	Install Trac and DAV-SVN
Sets up a Vhost pointing to [Trac]->home
Using the config parameter [Trac]->hostname
Sets up a trac environment for every directory found under [Trac]->data_dir

[Trac]
name = My Foo Server
hostname = trac.foo.com
home = /mnt/sites/trac
data_dir = /mnt/trac
svn_dir = /mnt/subversion
server_admin = root@foo.com
sdb_auth_domain = users
Optional
SSLCertificateFile = /mnt/ssl/foo.crt
SSLCertificateKeyFile = /mnt/ssl/foo.key
SSLCertificateChainFile = /mnt/ssl/FooCA.crt

	
install()

	

	
main()

	

	
setup_vhost()

	

boto.pyami.launch_ami

	
boto.pyami.launch_ami.main()

	

	
boto.pyami.launch_ami.usage()

	

boto.pyami.scriptbase

	
class boto.pyami.scriptbase.ScriptBase(config_file=None)

	
	
main()

	

	
mkdir(path)

	

	
notify(subject, body='')

	

	
run(command, notify=True, exit_on_error=False, cwd=None)

	

	
umount(path)

	

boto.pyami.startup

	
class boto.pyami.startup.Startup(config_file=None)

	
	
main()

	

	
run_scripts()

	

RDS

boto.rds

	
class boto.rds.RDSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/')

	
	
APIVersion = '2011-04-01'

	

	
DefaultRegionEndpoint = 'rds.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
authorize_dbsecurity_group(group_name, cidr_ip=None, ec2_security_group_name=None, ec2_security_group_owner_id=None)

	Add a new rule to an existing security group.
You need to pass in either src_security_group_name and
src_security_group_owner_id OR a CIDR block but not both.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are adding
the rule to.

	ec2_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the EC2 security group
you are granting access to.

	ec2_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the EC2
security group you are granting
access to.

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block you are providing access to.
See http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
create_dbinstance(id, allocated_storage, instance_class, master_username, master_password, port=3306, engine='MySQL5.1', db_name=None, param_group=None, security_groups=None, availability_zone=None, preferred_maintenance_window=None, backup_retention_period=None, preferred_backup_window=None, multi_az=False, engine_version=None, auto_minor_version_upgrade=True)

	Create a new DBInstance.

	Parameters:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the new instance.
Must contain 1-63 alphanumeric characters.
First character must be a letter.
May not end with a hyphen or contain two consecutive hyphens

	allocated_storage (int [https://docs.python.org/2/library/functions.html#int]) – Initially allocated storage size, in GBs.
Valid values are [5-1024]

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of
the DBInstance. Valid values are:

	db.m1.small

	db.m1.large

	db.m1.xlarge

	db.m2.xlarge

	db.m2.2xlarge

	db.m2.4xlarge

	engine (str [https://docs.python.org/2/library/functions.html#str]) – Name of database engine. Must be MySQL5.1 for now.

	master_username (str [https://docs.python.org/2/library/functions.html#str]) – Name of master user for the DBInstance.
Must be 1-15 alphanumeric characters, first
must be a letter.

	master_password (str [https://docs.python.org/2/library/functions.html#str]) – Password of master user for the DBInstance.
Must be 4-16 alphanumeric characters.

	port (int [https://docs.python.org/2/library/functions.html#int]) – Port number on which database accepts connections.
Valid values [1115-65535]. Defaults to 3306.

	db_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of a database to create when the DBInstance
is created. Default is to create no databases.

	param_group (str [https://docs.python.org/2/library/functions.html#str]) – Name of DBParameterGroup to associate with
this DBInstance. If no groups are specified
no parameter groups will be used.

	security_groups (list of str or list of DBSecurityGroup objects) – List of names of DBSecurityGroup to authorize on
this DBInstance.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Name of the availability zone to place
DBInstance into.

	preferred_maintenance_window (str [https://docs.python.org/2/library/functions.html#str]) – The weekly time range (in UTC)
during which maintenance can occur.
Default is Sun:05:00-Sun:09:00

	backup_retention_period (int [https://docs.python.org/2/library/functions.html#int]) – The number of days for which automated
backups are retained. Setting this to
zero disables automated backups.

	preferred_backup_window (str [https://docs.python.org/2/library/functions.html#str]) – The daily time range during which
automated backups are created (if
enabled). Must be in h24:mi-hh24:mi
format (UTC).

	multi_az (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, specifies the DB Instance will be
deployed in multiple availability zones.

	engine_version (str [https://docs.python.org/2/library/functions.html#str]) – Version number of the database engine to use.

	auto_minor_version_upgrade (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicates that minor engine
upgrades will be applied
automatically to the Read Replica
during the maintenance window.
Default is True.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The new db instance.

	
create_dbinstance_read_replica(id, source_id, instance_class=None, port=3306, availability_zone=None, auto_minor_version_upgrade=None)

	Create a new DBInstance Read Replica.

	Parameters:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the new instance.
Must contain 1-63 alphanumeric characters.
First character must be a letter.
May not end with a hyphen or contain two consecutive hyphens

	source_id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the DB Instance for which this
DB Instance will act as a Read Replica.

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Default is to inherit from
the source DB Instance.

Valid values are:

	db.m1.small

	db.m1.large

	db.m1.xlarge

	db.m2.xlarge

	db.m2.2xlarge

	db.m2.4xlarge

	port (int [https://docs.python.org/2/library/functions.html#int]) – Port number on which database accepts connections.
Default is to inherit from source DB Instance.
Valid values [1115-65535]. Defaults to 3306.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Name of the availability zone to place
DBInstance into.

	auto_minor_version_upgrade (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicates that minor engine
upgrades will be applied
automatically to the Read Replica
during the maintenance window.
Default is to inherit this value
from the source DB Instance.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The new db instance.

	
create_dbsecurity_group(name, description=None)

	Create a new security group for your account.
This will create the security group within the region you
are currently connected to.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new security group

	description (string [https://docs.python.org/2/library/string.html#module-string]) – The description of the new security group

	Return type:	boto.rds.dbsecuritygroup.DBSecurityGroup

	Returns:	The newly created DBSecurityGroup

	
create_dbsnapshot(snapshot_id, dbinstance_id)

	Create a new DB snapshot.

	Parameters:	
	snapshot_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier for the DBSnapshot

	dbinstance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The source identifier for the RDS instance from
which the snapshot is created.

	Return type:	boto.rds.dbsnapshot.DBSnapshot

	Returns:	The newly created DBSnapshot

	
create_parameter_group(name, engine='MySQL5.1', description='')

	Create a new dbparameter group for your account.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new dbparameter group

	engine (str [https://docs.python.org/2/library/functions.html#str]) – Name of database engine.

	description (string [https://docs.python.org/2/library/string.html#module-string]) – The description of the new security group

	Return type:	boto.rds.dbsecuritygroup.DBSecurityGroup

	Returns:	The newly created DBSecurityGroup

	
delete_dbinstance(id, skip_final_snapshot=False, final_snapshot_id='')

	Delete an existing DBInstance.

	Parameters:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the new instance.

	skip_final_snapshot (bool [https://docs.python.org/2/library/functions.html#bool]) – This parameter determines whether a final
db snapshot is created before the instance
is deleted. If True, no snapshot
is created. If False, a snapshot
is created before deleting the instance.

	final_snapshot_id (str [https://docs.python.org/2/library/functions.html#str]) – If a final snapshot is requested, this
is the identifier used for that snapshot.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The deleted db instance.

	
delete_dbsecurity_group(name)

	Delete a DBSecurityGroup from your account.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the DBSecurityGroup to delete

	
delete_dbsnapshot(identifier)

	Delete a DBSnapshot

	Parameters:	identifier (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier of the DBSnapshot to delete

	
delete_parameter_group(name)

	Delete a DBSecurityGroup from your account.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the DBSecurityGroup to delete

	
get_all_dbinstances(instance_id=None, max_records=None, marker=None)

	Retrieve all the DBInstances in your account.

	Parameters:	
	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – DB Instance identifier. If supplied, only
information this instance will be returned.
Otherwise, info about all DB Instances will
be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of boto.rds.dbinstance.DBInstance

	
get_all_dbparameter_groups(groupname=None, max_records=None, marker=None)

	Get all parameter groups associated with your account in a region.

	Parameters:	
	groupname (str [https://docs.python.org/2/library/functions.html#str]) – The name of the DBParameter group to retrieve.
If not provided, all DBParameter groups will be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of boto.ec2.parametergroup.ParameterGroup

	
get_all_dbparameters(groupname, source=None, max_records=None, marker=None)

	Get all parameters associated with a ParameterGroup

	Parameters:	
	groupname (str [https://docs.python.org/2/library/functions.html#str]) – The name of the DBParameter group to retrieve.

	source (str [https://docs.python.org/2/library/functions.html#str]) – Specifies which parameters to return.
If not specified, all parameters will be returned.
Valid values are: user|system|engine-default

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	boto.ec2.parametergroup.ParameterGroup

	Returns:	The ParameterGroup

	
get_all_dbsecurity_groups(groupname=None, max_records=None, marker=None)

	Get all security groups associated with your account in a region.

	Parameters:	
	groupnames (list) – A list of the names of security groups to retrieve.
If not provided, all security groups will
be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of boto.rds.dbsecuritygroup.DBSecurityGroup

	
get_all_dbsnapshots(snapshot_id=None, instance_id=None, max_records=None, marker=None)

	Get information about DB Snapshots.

	Parameters:	
	snapshot_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier of an RDS snapshot.
If not provided, all RDS snapshots will be returned.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The identifier of a DBInstance. If provided,
only the DBSnapshots related to that instance will
be returned.
If not provided, all RDS snapshots will be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of boto.rds.dbsnapshot.DBSnapshot

	
get_all_events(source_identifier=None, source_type=None, start_time=None, end_time=None, max_records=None, marker=None)

	Get information about events related to your DBInstances,
DBSecurityGroups and DBParameterGroups.

	Parameters:	
	source_identifier (str [https://docs.python.org/2/library/functions.html#str]) – If supplied, the events returned will be
limited to those that apply to the identified
source. The value of this parameter depends
on the value of source_type. If neither
parameter is specified, all events in the time
span will be returned.

	source_type (str [https://docs.python.org/2/library/functions.html#str]) – Specifies how the source_identifier should
be interpreted. Valid values are:
b-instance | db-security-group |
db-parameter-group | db-snapshot

	start_time (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The beginning of the time interval for events.
If not supplied, all available events will
be returned.

	end_time (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The ending of the time interval for events.
If not supplied, all available events will
be returned.

	max_records (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records to be returned.
If more results are available, a MoreToken will
be returned in the response that can be used to
retrieve additional records. Default is 100.

	marker (str [https://docs.python.org/2/library/functions.html#str]) – The marker provided by a previous request.

	Return type:	list

	Returns:	A list of class:boto.rds.event.Event

	
modify_dbinstance(id, param_group=None, security_groups=None, preferred_maintenance_window=None, master_password=None, allocated_storage=None, instance_class=None, backup_retention_period=None, preferred_backup_window=None, multi_az=False, apply_immediately=False)

	Modify an existing DBInstance.

	Parameters:	
	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier for the new instance.

	security_groups (list of str or list of DBSecurityGroup objects) – List of names of DBSecurityGroup to authorize on
this DBInstance.

	preferred_maintenance_window (str [https://docs.python.org/2/library/functions.html#str]) – The weekly time range (in UTC)
during which maintenance can
occur.
Default is Sun:05:00-Sun:09:00

	master_password (str [https://docs.python.org/2/library/functions.html#str]) – Password of master user for the DBInstance.
Must be 4-15 alphanumeric characters.

	allocated_storage (int [https://docs.python.org/2/library/functions.html#int]) – The new allocated storage size, in GBs.
Valid values are [5-1024]

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Changes will be applied at
next maintenance window unless
apply_immediately is True.

Valid values are:

	db.m1.small

	db.m1.large

	db.m1.xlarge

	db.m2.xlarge

	db.m2.2xlarge

	db.m2.4xlarge

	apply_immediately (bool [https://docs.python.org/2/library/functions.html#bool]) – If true, the modifications will be applied
as soon as possible rather than waiting for
the next preferred maintenance window.

	backup_retention_period (int [https://docs.python.org/2/library/functions.html#int]) – The number of days for which automated
backups are retained. Setting this to
zero disables automated backups.

	preferred_backup_window (str [https://docs.python.org/2/library/functions.html#str]) – The daily time range during which
automated backups are created (if
enabled). Must be in h24:mi-hh24:mi
format (UTC).

	multi_az (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, specifies the DB Instance will be
deployed in multiple availability zones.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The modified db instance.

	
modify_parameter_group(name, parameters=None)

	Modify a parameter group for your account.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new parameter group

	parameters (list of boto.rds.parametergroup.Parameter) – The new parameters

	Return type:	boto.rds.parametergroup.ParameterGroup

	Returns:	The newly created ParameterGroup

	
reboot_dbinstance(id)

	Reboot DBInstance.

	Parameters:	id (str [https://docs.python.org/2/library/functions.html#str]) – Unique identifier of the instance.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The rebooting db instance.

	
reset_parameter_group(name, reset_all_params=False, parameters=None)

	Resets some or all of the parameters of a ParameterGroup to the
default value

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the ParameterGroup to reset

	parameters (list of boto.rds.parametergroup.Parameter) – The parameters to reset. If not supplied,
all parameters will be reset.

	
restore_dbinstance_from_dbsnapshot(identifier, instance_id, instance_class, port=None, availability_zone=None)

	Create a new DBInstance from a DB snapshot.

	Parameters:	
	identifier (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier for the DBSnapshot

	instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The source identifier for the RDS instance from
which the snapshot is created.

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Valid values are:
db.m1.small | db.m1.large | db.m1.xlarge |
db.m2.2xlarge | db.m2.4xlarge

	port (int [https://docs.python.org/2/library/functions.html#int]) – Port number on which database accepts connections.
Valid values [1115-65535]. Defaults to 3306.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Name of the availability zone to place
DBInstance into.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The newly created DBInstance

	
restore_dbinstance_from_point_in_time(source_instance_id, target_instance_id, use_latest=False, restore_time=None, dbinstance_class=None, port=None, availability_zone=None)

	Create a new DBInstance from a point in time.

	Parameters:	
	source_instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier for the source DBInstance.

	target_instance_id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier of the new DBInstance.

	use_latest (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the latest snapshot availabile will
be used.

	restore_time (datetime [https://docs.python.org/2/library/datetime.html#module-datetime]) – The date and time to restore from. Only
used if use_latest is False.

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Valid values are:
db.m1.small | db.m1.large | db.m1.xlarge |
db.m2.2xlarge | db.m2.4xlarge

	port (int [https://docs.python.org/2/library/functions.html#int]) – Port number on which database accepts connections.
Valid values [1115-65535]. Defaults to 3306.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – Name of the availability zone to place
DBInstance into.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The newly created DBInstance

	
revoke_dbsecurity_group(group_name, ec2_security_group_name=None, ec2_security_group_owner_id=None, cidr_ip=None)

	Remove an existing rule from an existing security group.
You need to pass in either ec2_security_group_name and
ec2_security_group_owner_id OR a CIDR block.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are removing
the rule from.

	ec2_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the EC2 security group
from which you are removing access.

	ec2_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the EC2
security from which you are
removing access.

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block from which you are removing access.
See http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
revoke_security_group(group_name, ec2_security_group_name=None, ec2_security_group_owner_id=None, cidr_ip=None)

	Remove an existing rule from an existing security group.
You need to pass in either ec2_security_group_name and
ec2_security_group_owner_id OR a CIDR block.

	Parameters:	
	group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the security group you are removing
the rule from.

	ec2_security_group_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the EC2 security group
from which you are removing access.

	ec2_security_group_owner_id (string [https://docs.python.org/2/library/string.html#module-string]) – The ID of the owner of the EC2
security from which you are
removing access.

	cidr_ip (string [https://docs.python.org/2/library/string.html#module-string]) – The CIDR block from which you are removing access.
See http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful.

	
boto.rds.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.ec2.connection.EC2Connection.
Any additional parameters after the region_name are passed on to
the connect method of the region object.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.ec2.connection.EC2Connection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.rds.regions()

	Get all available regions for the RDS service.

	Return type:	list

	Returns:	A list of boto.rds.regioninfo.RDSRegionInfo

boto.rds.dbinstance

	
class boto.rds.dbinstance.DBInstance(connection=None, id=None)

	Represents a RDS DBInstance

	
endElement(name, value, connection)

	

	
modify(param_group=None, security_groups=None, preferred_maintenance_window=None, master_password=None, allocated_storage=None, instance_class=None, backup_retention_period=None, preferred_backup_window=None, multi_az=False, apply_immediately=False)

	Modify this DBInstance.

	Parameters:	
	security_groups (list of str or list of DBSecurityGroup objects) – List of names of DBSecurityGroup to authorize on
this DBInstance.

	preferred_maintenance_window (str [https://docs.python.org/2/library/functions.html#str]) – The weekly time range (in UTC)
during which maintenance can
occur.
Default is Sun:05:00-Sun:09:00

	master_password (str [https://docs.python.org/2/library/functions.html#str]) – Password of master user for the DBInstance.
Must be 4-15 alphanumeric characters.

	allocated_storage (int [https://docs.python.org/2/library/functions.html#int]) – The new allocated storage size, in GBs.
Valid values are [5-1024]

	instance_class (str [https://docs.python.org/2/library/functions.html#str]) – The compute and memory capacity of the
DBInstance. Changes will be applied at
next maintenance window unless
apply_immediately is True.

Valid values are:

	db.m1.small

	db.m1.large

	db.m1.xlarge

	db.m2.xlarge

	db.m2.2xlarge

	db.m2.4xlarge

	apply_immediately (bool [https://docs.python.org/2/library/functions.html#bool]) – If true, the modifications will be applied
as soon as possible rather than waiting for
the next preferred maintenance window.

	backup_retention_period (int [https://docs.python.org/2/library/functions.html#int]) – The number of days for which automated
backups are retained. Setting this to
zero disables automated backups.

	preferred_backup_window (str [https://docs.python.org/2/library/functions.html#str]) – The daily time range during which
automated backups are created (if
enabled). Must be in h24:mi-hh24:mi
format (UTC).

	multi_az (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, specifies the DB Instance will be
deployed in multiple availability zones.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The modified db instance.

	
reboot()

	Reboot this DBInstance

	Return type:	boto.rds.dbsnapshot.DBSnapshot

	Returns:	The newly created DBSnapshot

	
snapshot(snapshot_id)

	Create a new DB snapshot of this DBInstance.

	Parameters:	identifier (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier for the DBSnapshot

	Return type:	boto.rds.dbsnapshot.DBSnapshot

	Returns:	The newly created DBSnapshot

	
startElement(name, attrs, connection)

	

	
stop(skip_final_snapshot=False, final_snapshot_id='')

	Delete this DBInstance.

	Parameters:	
	skip_final_snapshot (bool [https://docs.python.org/2/library/functions.html#bool]) – This parameter determines whether a final
db snapshot is created before the instance
is deleted. If True, no snapshot is created.
If False, a snapshot is created before
deleting the instance.

	final_snapshot_id (str [https://docs.python.org/2/library/functions.html#str]) – If a final snapshot is requested, this
is the identifier used for that snapshot.

	Return type:	boto.rds.dbinstance.DBInstance

	Returns:	The deleted db instance.

	
update(validate=False)

	Update the DB instance’s status information by making a call to fetch
the current instance attributes from the service.

	Parameters:	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, if EC2 returns no data about the
instance the update method returns quietly. If
the validate param is True, however, it will
raise a ValueError exception if no data is
returned from EC2.

	
class boto.rds.dbinstance.PendingModifiedValues

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.rds.dbsecuritygroup

Represents an DBSecurityGroup

	
class boto.rds.dbsecuritygroup.DBSecurityGroup(connection=None, owner_id=None, name=None, description=None)

	
	
authorize(cidr_ip=None, ec2_group=None)

	Add a new rule to this DBSecurity group.
You need to pass in either a CIDR block to authorize or
and EC2 SecurityGroup.

@type cidr_ip: string
@param cidr_ip: A valid CIDR IP range to authorize

@type ec2_group: boto.ec2.securitygroup.SecurityGroup>

@rtype: bool
@return: True if successful.

	
delete()

	

	
endElement(name, value, connection)

	

	
revoke(cidr_ip=None, ec2_group=None)

	Revoke access to a CIDR range or EC2 SecurityGroup.
You need to pass in either a CIDR block or
an EC2 SecurityGroup from which to revoke access.

@type cidr_ip: string
@param cidr_ip: A valid CIDR IP range to revoke

@type ec2_group: boto.ec2.securitygroup.SecurityGroup>

@rtype: bool
@return: True if successful.

	
startElement(name, attrs, connection)

	

	
class boto.rds.dbsecuritygroup.EC2SecurityGroup(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.rds.dbsecuritygroup.IPRange(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.rds.dbsnapshot

	
class boto.rds.dbsnapshot.DBSnapshot(connection=None, id=None)

	Represents a RDS DB Snapshot

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.rds.event

	
class boto.rds.event.Event(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.rds.parametergroup

	
class boto.rds.parametergroup.Parameter(group=None, name=None)

	Represents a RDS Parameter

	
ValidApplyMethods = ['immediate', 'pending-reboot']

	

	
ValidApplyTypes = ['static', 'dynamic']

	

	
ValidSources = ['user', 'system', 'engine-default']

	

	
ValidTypes = {'integer': <type 'int'>, 'boolean': <type 'bool'>, 'string': <type 'str'>}

	

	
apply(immediate=False)

	

	
endElement(name, value, connection)

	

	
get_value()

	

	
merge(d, i)

	

	
set_value(value)

	

	
startElement(name, attrs, connection)

	

	
value

	

	
class boto.rds.parametergroup.ParameterGroup(connection=None)

	
	
add_param(name, value, apply_method)

	

	
endElement(name, value, connection)

	

	
get_params()

	

	
modifiable()

	

	
startElement(name, attrs, connection)

	

route53

boto.route53.connection

	
class boto.route53.connection.Route53Connection(aws_access_key_id=None, aws_secret_access_key=None, port=None, proxy=None, proxy_port=None, host='route53.amazonaws.com', debug=0)

	
	
DefaultHost = 'route53.amazonaws.com'

	The default Route53 API endpoint to connect to.

	
Version = '2011-05-05'

	Route53 API version.

	
XMLNameSpace = 'https://route53.amazonaws.com/doc/2011-05-05/'

	XML schema for this Route53 API version.

	
change_rrsets(hosted_zone_id, xml_body)

	Create or change the authoritative DNS information for this
Hosted Zone.
Returns a Python data structure with information about the set of
changes, including the Change ID.

	Parameters:	
	hosted_zone_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier for the Hosted Zone

	xml_body (str [https://docs.python.org/2/library/functions.html#str]) – The list of changes to be made, defined in the
XML schema defined by the Route53 service.

	
create_hosted_zone(domain_name, caller_ref=None, comment='')

	Create a new Hosted Zone. Returns a Python data structure with
information about the newly created Hosted Zone.

	Parameters:	
	domain_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the domain. This should be a
fully-specified domain, and should end with a final period
as the last label indication. If you omit the final period,
Amazon Route 53 assumes the domain is relative to the root.
This is the name you have registered with your DNS registrar.
It is also the name you will delegate from your registrar to
the Amazon Route 53 delegation servers returned in
response to this request.A list of strings with the image
IDs wanted.

	caller_ref (str [https://docs.python.org/2/library/functions.html#str]) – A unique string that identifies the request
and that allows failed CreateHostedZone requests to be retried
without the risk of executing the operation twice. If you don’t
provide a value for this, boto will generate a Type 4 UUID and
use that.

	comment (str [https://docs.python.org/2/library/functions.html#str]) – Any comments you want to include about the hosted
zone.

	
delete_hosted_zone(hosted_zone_id)

	

	
get_all_hosted_zones(start_marker=None, zone_list=None)

	Returns a Python data structure with information about all
Hosted Zones defined for the AWS account.

	Parameters:	
	start_marker (int [https://docs.python.org/2/library/functions.html#int]) – start marker to pass when fetching additional
results after a truncated list

	zone_list (list) – a HostedZones list to prepend to results

	
get_all_rrsets(hosted_zone_id, type=None, name=None, identifier=None, maxitems=None)

	Retrieve the Resource Record Sets defined for this Hosted Zone.
Returns the raw XML data returned by the Route53 call.

	Parameters:	
	hosted_zone_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier for the Hosted Zone

	type (str [https://docs.python.org/2/library/functions.html#str]) – The type of resource record set to begin the record
listing from. Valid choices are:

	A

	AAAA

	CNAME

	MX

	NS

	PTR

	SOA

	SPF

	SRV

	TXT

Valid values for weighted resource record sets:

	A

	AAAA

	CNAME

	TXT

Valid values for Zone Apex Aliases:

	A

	AAAA

	name (str [https://docs.python.org/2/library/functions.html#str]) – The first name in the lexicographic ordering of domain
names to be retrieved

	identifier (str [https://docs.python.org/2/library/functions.html#str]) – In a hosted zone that includes weighted resource
record sets (multiple resource record sets with the same DNS
name and type that are differentiated only by SetIdentifier),
if results were truncated for a given DNS name and type,
the value of SetIdentifier for the next resource record
set that has the current DNS name and type

	maxitems (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of records

	
get_change(change_id)

	Get information about a proposed set of changes, as submitted
by the change_rrsets method.
Returns a Python data structure with status information about the
changes.

	Parameters:	change_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier for the set of changes.
This ID is returned in the response to the change_rrsets method.

	
get_hosted_zone(hosted_zone_id)

	Get detailed information about a particular Hosted Zone.

	Parameters:	hosted_zone_id (str [https://docs.python.org/2/library/functions.html#str]) – The unique identifier for the Hosted Zone

	
make_request(action, path, headers=None, data='', params=None)

	

boto.route53.hostedzone

	
class boto.route53.hostedzone.HostedZone(id=None, name=None, owner=None, version=None, caller_reference=None, config=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.route53.exception

	
exception boto.route53.exception.DNSServerError(status, reason, body=None, *args)

	

S3

boto.s3.acl

	
class boto.s3.acl.ACL(policy=None)

	
	
add_email_grant(permission, email_address)

	

	
add_grant(grant)

	

	
add_user_grant(permission, user_id, display_name=None)

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.s3.acl.Grant(permission=None, type=None, id=None, display_name=None, uri=None, email_address=None)

	
	
NameSpace = 'xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"'

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
class boto.s3.acl.Policy(parent=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml()

	

boto.s3.bucket

	
class boto.s3.bucket.Bucket(connection=None, name=None, key_class=<class 'boto.s3.key.Key'>)

	
	
BucketLoggingBody = '<?xml version="1.0" encoding="UTF-8"?>\n <BucketLoggingStatus xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n <LoggingEnabled>\n <TargetBucket>%s</TargetBucket>\n <TargetPrefix>%s</TargetPrefix>\n </LoggingEnabled>\n </BucketLoggingStatus>'

	

	
BucketPaymentBody = '<?xml version="1.0" encoding="UTF-8"?>\n <RequestPaymentConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n <Payer>%s</Payer>\n </RequestPaymentConfiguration>'

	

	
EmptyBucketLoggingBody = '<?xml version="1.0" encoding="UTF-8"?>\n <BucketLoggingStatus xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n </BucketLoggingStatus>'

	

	
LoggingGroup = 'http://acs.amazonaws.com/groups/s3/LogDelivery'

	

	
MFADeleteRE = '<MfaDelete>([A-Za-z]+)</MfaDelete>'

	

	
VersionRE = '<Status>([A-Za-z]+)</Status>'

	

	
VersioningBody = '<?xml version="1.0" encoding="UTF-8"?>\n <VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n <Status>%s</Status>\n <MfaDelete>%s</MfaDelete>\n </VersioningConfiguration>'

	

	
WebsiteBody = '<?xml version="1.0" encoding="UTF-8"?>\n <WebsiteConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">\n <IndexDocument><Suffix>%s</Suffix></IndexDocument>\n %s\n </WebsiteConfiguration>'

	

	
WebsiteErrorFragment = '<ErrorDocument><Key>%s</Key></ErrorDocument>'

	

	
add_email_grant(permission, email_address, recursive=False, headers=None)

	Convenience method that provides a quick way to add an email grant
to a bucket. This method retrieves the current ACL, creates a new
grant based on the parameters passed in, adds that grant to the ACL
and then PUT’s the new ACL back to S3.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ, WRITE, READ_ACP, WRITE_ACP, FULL_CONTROL).

	email_address (string [https://docs.python.org/2/library/string.html#module-string]) – The email address associated with the AWS
account your are granting the permission to.

	recursive (boolean) – A boolean value to controls whether the command
will apply the grant to all keys within the bucket
or not. The default value is False. By passing a
True value, the call will iterate through all keys
in the bucket and apply the same grant to each key.
CAUTION: If you have a lot of keys, this could take
a long time!

	
add_user_grant(permission, user_id, recursive=False, headers=None, display_name=None)

	Convenience method that provides a quick way to add a canonical
user grant to a bucket. This method retrieves the current ACL,
creates a new grant based on the parameters passed in, adds that
grant to the ACL and then PUT’s the new ACL back to S3.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ, WRITE, READ_ACP, WRITE_ACP, FULL_CONTROL).

	user_id (string [https://docs.python.org/2/library/string.html#module-string]) – The canonical user id associated with the AWS
account your are granting the permission to.

	recursive (boolean) – A boolean value to controls whether the command
will apply the grant to all keys within the bucket
or not. The default value is False. By passing a
True value, the call will iterate through all keys
in the bucket and apply the same grant to each key.
CAUTION: If you have a lot of keys, this could take
a long time!

	display_name (string [https://docs.python.org/2/library/string.html#module-string]) – An option string containing the user’s
Display Name. Only required on Walrus.

	
cancel_multipart_upload(key_name, upload_id, headers=None)

	

	
complete_multipart_upload(key_name, upload_id, xml_body, headers=None)

	Complete a multipart upload operation.

	
configure_lifecycle(lifecycle_config, headers=None)

	Configure lifecycle for this bucket.

	Parameters:	lifecycle_config (boto.s3.lifecycle.Lifecycle) – The lifecycle configuration you want
to configure for this bucket.

	
configure_versioning(versioning, mfa_delete=False, mfa_token=None, headers=None)

	Configure versioning for this bucket.

..note:: This feature is currently in beta.

	Parameters:	
	versioning (bool [https://docs.python.org/2/library/functions.html#bool]) – A boolean indicating whether version is
enabled (True) or disabled (False).

	mfa_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – A boolean indicating whether the Multi-Factor
Authentication Delete feature is enabled (True)
or disabled (False). If mfa_delete is enabled
then all Delete operations will require the
token from your MFA device to be passed in
the request.

	mfa_token (tuple [https://docs.python.org/2/library/functions.html#tuple] or list of strings) – A tuple or list consisting of the serial number
from the MFA device and the current value of
the six-digit token associated with the device.
This value is required when you are changing
the status of the MfaDelete property of
the bucket.

	
configure_website(suffix, error_key='', headers=None)

	Configure this bucket to act as a website

	Parameters:	
	suffix (str [https://docs.python.org/2/library/functions.html#str]) – Suffix that is appended to a request that is for a
“directory” on the website endpoint (e.g. if the suffix
is index.html and you make a request to
samplebucket/images/ the data that is returned will
be for the object with the key name images/index.html).
The suffix must not be empty and must not include a
slash character.

	error_key (str [https://docs.python.org/2/library/functions.html#str]) – The object key name to use when a 4XX class
error occurs. This is optional.

	
copy_key(new_key_name, src_bucket_name, src_key_name, metadata=None, src_version_id=None, storage_class='STANDARD', preserve_acl=False, encrypt_key=False, headers=None, query_args=None)

	Create a new key in the bucket by copying another existing key.

	Parameters:	
	new_key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new key

	src_bucket_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the source bucket

	src_key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the source key

	src_version_id (string [https://docs.python.org/2/library/string.html#module-string]) – The version id for the key. This param
is optional. If not specified, the newest
version of the key will be copied.

	metadata (dict) – Metadata to be associated with new key.
If metadata is supplied, it will replace the
metadata of the source key being copied.
If no metadata is supplied, the source key’s
metadata will be copied to the new key.

	storage_class (string [https://docs.python.org/2/library/string.html#module-string]) – The storage class of the new key.
By default, the new key will use the
standard storage class. Possible values are:
STANDARD | REDUCED_REDUNDANCY

	preserve_acl (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the ACL from the source key
will be copied to the destination
key. If False, the destination key
will have the default ACL.
Note that preserving the ACL in the
new key object will require two
additional API calls to S3, one to
retrieve the current ACL and one to
set that ACL on the new object. If
you don’t care about the ACL, a value
of False will be significantly more
efficient.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	headers (dict) – A dictionary of header name/value pairs.

	query_args (string [https://docs.python.org/2/library/string.html#module-string]) – A string of additional querystring arguments
to append to the request

	Return type:	boto.s3.key.Key or subclass

	Returns:	An instance of the newly created key object

	
delete(headers=None)

	

	
delete_key(key_name, headers=None, version_id=None, mfa_token=None)

	Deletes a key from the bucket. If a version_id is provided,
only that version of the key will be deleted.

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The key name to delete

	version_id (string [https://docs.python.org/2/library/string.html#module-string]) – The version ID (optional)

	mfa_token (tuple [https://docs.python.org/2/library/functions.html#tuple] or list of strings) – A tuple or list consisting of the serial number
from the MFA device and the current value of
the six-digit token associated with the device.
This value is required anytime you are
deleting versioned objects from a bucket
that has the MFADelete option on the bucket.

	
delete_keys(keys, quiet=False, mfa_token=None, headers=None)

	Deletes a set of keys using S3’s Multi-object delete API. If a
VersionID is specified for that key then that version is removed.
Returns a MultiDeleteResult Object, which contains Deleted
and Error elements for each key you ask to delete.

	Parameters:	
	keys (list) – A list of either key_names or (key_name, versionid) pairs
or a list of Key instances.

	quiet (boolean) – In quiet mode the response includes only keys where
the delete operation encountered an error. For a
successful deletion, the operation does not return
any information about the delete in the response body.

	mfa_token (tuple [https://docs.python.org/2/library/functions.html#tuple] or list of strings) – A tuple or list consisting of the serial number
from the MFA device and the current value of
the six-digit token associated with the device.
This value is required anytime you are
deleting versioned objects from a bucket
that has the MFADelete option on the bucket.

	Returns:	An instance of MultiDeleteResult

	
delete_lifecycle_configuration(headers=None)

	Removes all lifecycle configuration from the bucket.

	
delete_policy(headers=None)

	

	
delete_website_configuration(headers=None)

	Removes all website configuration from the bucket.

	
disable_logging(headers=None)

	

	
enable_logging(target_bucket, target_prefix='', headers=None)

	

	
endElement(name, value, connection)

	

	
generate_url(expires_in, method='GET', headers=None, force_http=False, response_headers=None, expires_in_absolute=False)

	

	
get_acl(key_name='', headers=None, version_id=None)

	

	
get_all_keys(headers=None, **params)

	A lower-level method for listing contents of a bucket.
This closely models the actual S3 API and requires you to manually
handle the paging of results. For a higher-level method
that handles the details of paging for you, you can use the list method.

	Parameters:	
	max_keys (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of keys to retrieve

	prefix (string [https://docs.python.org/2/library/string.html#module-string]) – The prefix of the keys you want to retrieve

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set

	delimiter (string [https://docs.python.org/2/library/string.html#module-string]) – If this optional, Unicode string parameter
is included with your request, then keys that
contain the same string between the prefix and
the first occurrence of the delimiter will be
rolled up into a single result element in the
CommonPrefixes collection. These rolled-up keys
are not returned elsewhere in the response.

	Return type:	ResultSet

	Returns:	The result from S3 listing the keys requested

	
get_all_multipart_uploads(headers=None, **params)

	A lower-level, version-aware method for listing active
MultiPart uploads for a bucket. This closely models the
actual S3 API and requires you to manually handle the paging
of results. For a higher-level method that handles the
details of paging for you, you can use the list method.

	Parameters:	
	max_uploads (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of uploads to retrieve.
Default value is 1000.

	key_marker (string [https://docs.python.org/2/library/string.html#module-string]) – Together with upload_id_marker, this parameter
specifies the multipart upload after which listing
should begin. If upload_id_marker is not specified,
only the keys lexicographically greater than the
specified key_marker will be included in the list.

If upload_id_marker is specified, any multipart
uploads for a key equal to the key_marker might
also be included, provided those multipart uploads
have upload IDs lexicographically greater than the
specified upload_id_marker.

	upload_id_marker (string [https://docs.python.org/2/library/string.html#module-string]) – Together with key-marker, specifies
the multipart upload after which listing
should begin. If key_marker is not specified,
the upload_id_marker parameter is ignored.
Otherwise, any multipart uploads for a key
equal to the key_marker might be included
in the list only if they have an upload ID
lexicographically greater than the specified
upload_id_marker.

	Return type:	ResultSet

	Returns:	The result from S3 listing the uploads requested

	
get_all_versions(headers=None, **params)

	A lower-level, version-aware method for listing contents of a bucket.
This closely models the actual S3 API and requires you to manually
handle the paging of results. For a higher-level method
that handles the details of paging for you, you can use the list method.

	Parameters:	
	max_keys (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of keys to retrieve

	prefix (string [https://docs.python.org/2/library/string.html#module-string]) – The prefix of the keys you want to retrieve

	key_marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set
with respect to keys.

	version_id_marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result
set with respect to version-id’s.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string]) – If this optional, Unicode string parameter
is included with your request, then keys that
contain the same string between the prefix and
the first occurrence of the delimiter will be
rolled up into a single result element in the
CommonPrefixes collection. These rolled-up keys
are not returned elsewhere in the response.

	Return type:	ResultSet

	Returns:	The result from S3 listing the keys requested

	
get_key(key_name, headers=None, version_id=None)

	Check to see if a particular key exists within the bucket. This
method uses a HEAD request to check for the existance of the key.
Returns: An instance of a Key object or None

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key to retrieve

	Return type:	boto.s3.key.Key

	Returns:	A Key object from this bucket.

	
get_lifecycle_config(headers=None)

	Returns the current lifecycle configuration on the bucket.

	Return type:	boto.s3.lifecycle.Lifecycle

	Returns:	A LifecycleConfig object that describes all current
lifecycle rules in effect for the bucket.

	
get_location()

	Returns the LocationConstraint for the bucket.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The LocationConstraint for the bucket or the empty
string if no constraint was specified when bucket
was created.

	
get_logging_status(headers=None)

	

	
get_policy(headers=None)

	Returns the JSON policy associated with the bucket. The policy
is returned as an uninterpreted JSON string.

	
get_request_payment(headers=None)

	

	
get_subresource(subresource, key_name='', headers=None, version_id=None)

	Get a subresource for a bucket or key.

	Parameters:	
	subresource (string [https://docs.python.org/2/library/string.html#module-string]) – The subresource to get.

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The key to operate on, or None to operate on the
bucket.

	headers (dict) – Additional HTTP headers to include in the request.

	src_version_id (string [https://docs.python.org/2/library/string.html#module-string]) – Optional. The version id of the key to operate
on. If not specified, operate on the newest
version.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The value of the subresource.

	
get_versioning_status(headers=None)

	Returns the current status of versioning on the bucket.

	Return type:	dict

	Returns:	A dictionary containing a key named ‘Versioning’
that can have a value of either Enabled, Disabled,
or Suspended. Also, if MFADelete has ever been enabled
on the bucket, the dictionary will contain a key
named ‘MFADelete’ which will have a value of either
Enabled or Suspended.

	
get_website_configuration(headers=None)

	Returns the current status of website configuration on the bucket.

	Return type:	dict

	Returns:	A dictionary containing a Python representation
of the XML response from S3. The overall structure is:

	WebsiteConfiguration
	IndexDocument
	Suffix : suffix that is appended to request that
is for a “directory” on the website endpoint

	ErrorDocument
	Key : name of object to serve when an error occurs

	
get_website_endpoint()

	Returns the fully qualified hostname to use is you want to access this
bucket as a website. This doesn’t validate whether the bucket has
been correctly configured as a website or not.

	
get_xml_acl(key_name='', headers=None, version_id=None)

	

	
initiate_multipart_upload(key_name, headers=None, reduced_redundancy=False, metadata=None, encrypt_key=False)

	Start a multipart upload operation.

	Parameters:	
	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key that will ultimately result from
this multipart upload operation. This will be exactly
as the key appears in the bucket after the upload
process has been completed.

	headers (dict) – Additional HTTP headers to send and store with the
resulting key in S3.

	reduced_redundancy (boolean) – In multipart uploads, the storage class is
specified when initiating the upload,
not when uploading individual parts. So
if you want the resulting key to use the
reduced redundancy storage class set this
flag when you initiate the upload.

	metadata (dict) – Any metadata that you would like to set on the key
that results from the multipart upload.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	
list(prefix='', delimiter='', marker='', headers=None)

	List key objects within a bucket. This returns an instance of an
BucketListResultSet that automatically handles all of the result
paging, etc. from S3. You just need to keep iterating until
there are no more results.

Called with no arguments, this will return an iterator object across
all keys within the bucket.

The Key objects returned by the iterator are obtained by parsing
the results of a GET on the bucket, also known as the List Objects
request. The XML returned by this request contains only a subset
of the information about each key. Certain metadata fields such
as Content-Type and user metadata are not available in the XML.
Therefore, if you want these additional metadata fields you will
have to do a HEAD request on the Key in the bucket.

	Parameters:	
	prefix (string [https://docs.python.org/2/library/string.html#module-string]) – allows you to limit the listing to a particular
prefix. For example, if you call the method with
prefix=’/foo/’ then the iterator will only cycle
through the keys that begin with the string ‘/foo/’.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string]) – can be used in conjunction with the prefix
to allow you to organize and browse your keys
hierarchically. See:
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/
for more details.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set

	Return type:	boto.s3.bucketlistresultset.BucketListResultSet

	Returns:	an instance of a BucketListResultSet that handles paging, etc

	
list_grants(headers=None)

	

	
list_multipart_uploads(key_marker='', upload_id_marker='', headers=None)

	List multipart upload objects within a bucket. This returns an
instance of an MultiPartUploadListResultSet that automatically
handles all of the result paging, etc. from S3. You just need
to keep iterating until there are no more results.

	Parameters:	marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set

	Return type:	boto.s3.bucketlistresultset.BucketListResultSet

	Returns:	an instance of a BucketListResultSet that handles paging, etc

	
list_versions(prefix='', delimiter='', key_marker='', version_id_marker='', headers=None)

	List version objects within a bucket. This returns an instance of an
VersionedBucketListResultSet that automatically handles all of the result
paging, etc. from S3. You just need to keep iterating until
there are no more results.
Called with no arguments, this will return an iterator object across
all keys within the bucket.

	Parameters:	
	prefix (string [https://docs.python.org/2/library/string.html#module-string]) – allows you to limit the listing to a particular
prefix. For example, if you call the method with
prefix=’/foo/’ then the iterator will only cycle
through the keys that begin with the string ‘/foo/’.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string]) – can be used in conjunction with the prefix
to allow you to organize and browse your keys
hierarchically. See:
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/
for more details.

	marker (string [https://docs.python.org/2/library/string.html#module-string]) – The “marker” of where you are in the result set

	Return type:	boto.s3.bucketlistresultset.BucketListResultSet

	Returns:	an instance of a BucketListResultSet that handles paging, etc

	
lookup(key_name, headers=None)

	Deprecated: Please use get_key method.

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key to retrieve

	Return type:	boto.s3.key.Key

	Returns:	A Key object from this bucket.

	
make_public(recursive=False, headers=None)

	

	
new_key(key_name=None)

	Creates a new key

	Parameters:	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the key to create

	Return type:	boto.s3.key.Key or subclass

	Returns:	An instance of the newly created key object

	
set_acl(acl_or_str, key_name='', headers=None, version_id=None)

	

	
set_as_logging_target(headers=None)

	

	
set_canned_acl(acl_str, key_name='', headers=None, version_id=None)

	

	
set_key_class(key_class)

	Set the Key class associated with this bucket. By default, this
would be the boto.s3.key.Key class but if you want to subclass that
for some reason this allows you to associate your new class with a
bucket so that when you call bucket.new_key() or when you get a listing
of keys in the bucket you will get an instances of your key class
rather than the default.

	Parameters:	key_class (class) – A subclass of Key that can be more specific

	
set_policy(policy, headers=None)

	Add or replace the JSON policy associated with the bucket.

	Parameters:	policy (str [https://docs.python.org/2/library/functions.html#str]) – The JSON policy as a string.

	
set_request_payment(payer='BucketOwner', headers=None)

	

	
set_subresource(subresource, value, key_name='', headers=None, version_id=None)

	Set a subresource for a bucket or key.

	Parameters:	
	subresource (string [https://docs.python.org/2/library/string.html#module-string]) – The subresource to set.

	value (string [https://docs.python.org/2/library/string.html#module-string]) – The value of the subresource.

	key_name (string [https://docs.python.org/2/library/string.html#module-string]) – The key to operate on, or None to operate on the
bucket.

	headers (dict) – Additional HTTP headers to include in the request.

	src_version_id (string [https://docs.python.org/2/library/string.html#module-string]) – Optional. The version id of the key to operate
on. If not specified, operate on the newest
version.

	
set_xml_acl(acl_str, key_name='', headers=None, version_id=None, query_args='acl')

	

	
startElement(name, attrs, connection)

	

	
class boto.s3.bucket.S3WebsiteEndpointTranslate

	
	
trans_region = defaultdict(<function <lambda>>, {'ap-northeast-1': 's3-website-ap-northeast-1', 'sa-east-1': 's3-website-sa-east-1', 'ap-southeast-1': 's3-website-ap-southeast-1', 'us-west-2': 's3-website-us-west-2', 'us-west-1': 's3-website-us-west-1', 'eu-west-1': 's3-website-eu-west-1'})

	

	
classmethod translate_region(reg)

	

boto.s3.bucketlistresultset

	
class boto.s3.bucketlistresultset.BucketListResultSet(bucket=None, prefix='', delimiter='', marker='', headers=None)

	A resultset for listing keys within a bucket. Uses the bucket_lister
generator function and implements the iterator interface. This
transparently handles the results paging from S3 so even if you have
many thousands of keys within the bucket you can iterate over all
keys in a reasonably efficient manner.

	
class boto.s3.bucketlistresultset.MultiPartUploadListResultSet(bucket=None, key_marker='', upload_id_marker='', headers=None)

	A resultset for listing multipart uploads within a bucket.
Uses the multipart_upload_lister generator function and
implements the iterator interface. This
transparently handles the results paging from S3 so even if you have
many thousands of uploads within the bucket you can iterate over all
keys in a reasonably efficient manner.

	
class boto.s3.bucketlistresultset.VersionedBucketListResultSet(bucket=None, prefix='', delimiter='', key_marker='', version_id_marker='', headers=None)

	A resultset for listing versions within a bucket. Uses the bucket_lister
generator function and implements the iterator interface. This
transparently handles the results paging from S3 so even if you have
many thousands of keys within the bucket you can iterate over all
keys in a reasonably efficient manner.

	
boto.s3.bucketlistresultset.bucket_lister(bucket, prefix='', delimiter='', marker='', headers=None)

	A generator function for listing keys in a bucket.

	
boto.s3.bucketlistresultset.multipart_upload_lister(bucket, key_marker='', upload_id_marker='', headers=None)

	A generator function for listing multipart uploads in a bucket.

	
boto.s3.bucketlistresultset.versioned_bucket_lister(bucket, prefix='', delimiter='', key_marker='', version_id_marker='', headers=None)

	A generator function for listing versions in a bucket.

boto.s3.connection

	
class boto.s3.connection.Location

	
	
APNortheast = 'ap-northeast-1'

	

	
APSoutheast = 'ap-southeast-1'

	

	
DEFAULT = ''

	

	
EU = 'EU'

	

	
SAEast = 'sa-east-1'

	

	
USWest = 'us-west-1'

	

	
class boto.s3.connection.OrdinaryCallingFormat

	
	
build_path_base(bucket, key='')

	

	
get_bucket_server(server, bucket)

	

	
class boto.s3.connection.ProtocolIndependentOrdinaryCallingFormat

	
	
build_url_base(connection, protocol, server, bucket, key='')

	

	
class boto.s3.connection.S3Connection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host='s3.amazonaws.com', debug=0, https_connection_factory=None, calling_format=<boto.s3.connection.SubdomainCallingFormat object>, path='/', provider='aws', bucket_class=<class 'boto.s3.bucket.Bucket'>, security_token=None, suppress_consec_slashes=True, anon=False)

	
	
DefaultHost = 's3.amazonaws.com'

	

	
QueryString = 'Signature=%s&Expires=%d&AWSAccessKeyId=%s'

	

	
build_post_form_args(bucket_name, key, expires_in=6000, acl=None, success_action_redirect=None, max_content_length=None, http_method='http', fields=None, conditions=None)

	Taken from the AWS book Python examples and modified for use with boto
This only returns the arguments required for the post form, not the
actual form. This does not return the file input field which also
needs to be added

	Parameters:	
	bucket_name (string [https://docs.python.org/2/library/string.html#module-string]) – Bucket to submit to

	key (string [https://docs.python.org/2/library/string.html#module-string]) – Key name, optionally add ${filename} to the end to
attach the submitted filename

	expires_in (integer) – Time (in seconds) before this expires, defaults
to 6000

	acl (boto.s3.acl.ACL) – ACL rule to use, if any

	success_action_redirect (string [https://docs.python.org/2/library/string.html#module-string]) – URL to redirect to on success

	max_content_length (integer) – Maximum size for this file

	http_method (string [https://docs.python.org/2/library/string.html#module-string]) – HTTP Method to use, “http” or “https”

	Return type:	dict

	Returns:	A dictionary containing field names/values as well as
a url to POST to

{
 "action": action_url_to_post_to,
 "fields": [
 {
 "name": field_name,
 "value": field_value
 },
 {
 "name": field_name2,
 "value": field_value2
 }
]
}

	
build_post_policy(expiration_time, conditions)

	Taken from the AWS book Python examples and modified for use with boto

	
create_bucket(bucket_name, headers=None, location='', policy=None)

	Creates a new located bucket. By default it’s in the USA. You can pass
Location.EU to create an European bucket.

	Parameters:	
	bucket_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new bucket

	headers (dict) – Additional headers to pass along with the request to AWS.

	location (boto.s3.connection.Location) – The location of the new bucket

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the
new key in S3.

	
delete_bucket(bucket, headers=None)

	

	
generate_url(expires_in, method, bucket='', key='', headers=None, query_auth=True, force_http=False, response_headers=None, expires_in_absolute=False)

	

	
get_all_buckets(headers=None)

	

	
get_bucket(bucket_name, validate=True, headers=None)

	

	
get_canonical_user_id(headers=None)

	Convenience method that returns the “CanonicalUserID” of the
user who’s credentials are associated with the connection.
The only way to get this value is to do a GET request on the
service which returns all buckets associated with the account.
As part of that response, the canonical userid is returned.
This method simply does all of that and then returns just the
user id.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	A string containing the canonical user id.

	
lookup(bucket_name, validate=True, headers=None)

	

	
make_request(method, bucket='', key='', headers=None, data='', query_args=None, sender=None, override_num_retries=None)

	

	
set_bucket_class(bucket_class)

	Set the Bucket class associated with this bucket. By default, this
would be the boto.s3.key.Bucket class but if you want to subclass that
for some reason this allows you to associate your new class.

	Parameters:	bucket_class (class) – A subclass of Bucket that can be more specific

	
class boto.s3.connection.SubdomainCallingFormat

	
	
get_bucket_server(*args, **kwargs)

	

	
class boto.s3.connection.VHostCallingFormat

	
	
get_bucket_server(*args, **kwargs)

	

	
boto.s3.connection.assert_case_insensitive(f)

	

	
boto.s3.connection.check_lowercase_bucketname(n)

	Bucket names must not contain uppercase characters. We check for
this by appending a lowercase character and testing with islower().
Note this also covers cases like numeric bucket names with dashes.

>>> check_lowercase_bucketname("Aaaa")
Traceback (most recent call last):
...
BotoClientError: S3Error: Bucket names cannot contain upper-case
characters when using either the sub-domain or virtual hosting calling
format.

>>> check_lowercase_bucketname("1234-5678-9123")
True
>>> check_lowercase_bucketname("abcdefg1234")
True

boto.s3.key

	
class boto.s3.key.Key(bucket=None, name=None)

	
	
BufferSize = 8192

	

	
DefaultContentType = 'application/octet-stream'

	

	
add_email_grant(permission, email_address, headers=None)

	Convenience method that provides a quick way to add an email grant
to a key. This method retrieves the current ACL, creates a new
grant based on the parameters passed in, adds that grant to the ACL
and then PUT’s the new ACL back to S3.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ, WRITE, READ_ACP, WRITE_ACP, FULL_CONTROL).

	email_address (string [https://docs.python.org/2/library/string.html#module-string]) – The email address associated with the AWS
account your are granting the permission to.

	recursive (boolean) – A boolean value to controls whether the command
will apply the grant to all keys within the bucket
or not. The default value is False. By passing a
True value, the call will iterate through all keys
in the bucket and apply the same grant to each key.
CAUTION: If you have a lot of keys, this could take
a long time!

	
add_user_grant(permission, user_id, headers=None, display_name=None)

	Convenience method that provides a quick way to add a canonical
user grant to a key. This method retrieves the current ACL,
creates a new grant based on the parameters passed in, adds that
grant to the ACL and then PUT’s the new ACL back to S3.

	Parameters:	
	permission (string [https://docs.python.org/2/library/string.html#module-string]) – The permission being granted. Should be one of:
(READ, WRITE, READ_ACP, WRITE_ACP, FULL_CONTROL).

	user_id (string [https://docs.python.org/2/library/string.html#module-string]) – The canonical user id associated with the AWS
account your are granting the permission to.

	display_name (string [https://docs.python.org/2/library/string.html#module-string]) – An option string containing the user’s
Display Name. Only required on Walrus.

	
change_storage_class(new_storage_class, dst_bucket=None)

	Change the storage class of an existing key.
Depending on whether a different destination bucket is supplied
or not, this will either move the item within the bucket, preserving
all metadata and ACL info bucket changing the storage class or it
will copy the item to the provided destination bucket, also
preserving metadata and ACL info.

	Parameters:	
	new_storage_class (string [https://docs.python.org/2/library/string.html#module-string]) – The new storage class for the Key.
Possible values are:
* STANDARD
* REDUCED_REDUNDANCY

	dst_bucket (string [https://docs.python.org/2/library/string.html#module-string]) – The name of a destination bucket. If not
provided the current bucket of the key
will be used.

	
close()

	

	
closed = False

	

	
compute_md5(fp, size=None)

	

	Parameters:	
	fp (file) – File pointer to the file to MD5 hash. The file pointer
will be reset to the same position before the
method returns.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where the file is being
split inplace into different parts. Less bytes may
be available.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

	Returns:	A tuple containing the hex digest version of the MD5 hash
as the first element and the base64 encoded version of the
plain digest as the second element.

	
copy(dst_bucket, dst_key, metadata=None, reduced_redundancy=False, preserve_acl=False, encrypt_key=False)

	Copy this Key to another bucket.

	Parameters:	
	dst_bucket (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the destination bucket

	dst_key (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the destination key

	metadata (dict) – Metadata to be associated with new key.
If metadata is supplied, it will replace the
metadata of the source key being copied.
If no metadata is supplied, the source key’s
metadata will be copied to the new key.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will force the storage
class of the new Key to be
REDUCED_REDUNDANCY regardless of the
storage class of the key being copied.
The Reduced Redundancy Storage (RRS)
feature of S3, provides lower
redundancy at lower storage cost.

	preserve_acl (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the ACL from the source key
will be copied to the destination
key. If False, the destination key
will have the default ACL.
Note that preserving the ACL in the
new key object will require two
additional API calls to S3, one to
retrieve the current ACL and one to
set that ACL on the new object. If
you don’t care about the ACL, a value
of False will be significantly more
efficient.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	Return type:	boto.s3.key.Key or subclass

	Returns:	An instance of the newly created key object

	
delete()

	Delete this key from S3

	
endElement(name, value, connection)

	

	
exists()

	Returns True if the key exists

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	Whether the key exists on S3

	
generate_url(expires_in, method='GET', headers=None, query_auth=True, force_http=False, response_headers=None, expires_in_absolute=False)

	Generate a URL to access this key.

	Parameters:	
	expires_in (int [https://docs.python.org/2/library/functions.html#int]) – How long the url is valid for, in seconds

	method (string [https://docs.python.org/2/library/string.html#module-string]) – The method to use for retrieving the file
(default is GET)

	headers (dict) – Any headers to pass along in the request

	query_auth (bool [https://docs.python.org/2/library/functions.html#bool]) –

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The URL to access the key

	
get_acl(headers=None)

	

	
get_contents_as_string(headers=None, cb=None, num_cb=10, torrent=False, version_id=None, response_headers=None)

	Retrieve an object from S3 using the name of the Key object as the
key in S3. Return the contents of the object as a string.
See get_contents_to_file method for details about the
parameters.

	Parameters:	
	headers (dict) – Any additional headers to send in the request

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, returns the contents of a torrent file
as a string.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	Returns:	The contents of the file as a string

	
get_contents_to_file(fp, headers=None, cb=None, num_cb=10, torrent=False, version_id=None, res_download_handler=None, response_headers=None)

	Retrieve an object from S3 using the name of the Key object as the
key in S3. Write the contents of the object to the file pointed
to by ‘fp’.

	Parameters:	
	fp (File -like object) –

	headers (dict) – additional HTTP headers that will be sent with
the GET request.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, returns the contents of a torrent
file as a string.

	res_download_handler – If provided, this handler will
perform the download.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	
get_contents_to_filename(filename, headers=None, cb=None, num_cb=10, torrent=False, version_id=None, res_download_handler=None, response_headers=None)

	Retrieve an object from S3 using the name of the Key object as the
key in S3. Store contents of the object to a file named by ‘filename’.
See get_contents_to_file method for details about the
parameters.

	Parameters:	
	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The filename of where to put the file contents

	headers (dict) – Any additional headers to send in the request

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, returns the contents of a torrent file
as a string.

	res_download_handler – If provided, this handler will
perform the download.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	
get_file(fp, headers=None, cb=None, num_cb=10, torrent=False, version_id=None, override_num_retries=None, response_headers=None)

	Retrieves a file from an S3 Key

	Parameters:	
	fp (file) – File pointer to put the data into

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – Flag for whether to get a torrent for the file

	override_num_retries (int [https://docs.python.org/2/library/functions.html#int]) – If not None will override configured
num_retries parameter for underlying GET.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	Param:	headers to send when retrieving the files

	
get_md5_from_hexdigest(md5_hexdigest)

	A utility function to create the 2-tuple (md5hexdigest, base64md5)
from just having a precalculated md5_hexdigest.

	
get_metadata(name)

	

	
get_torrent_file(fp, headers=None, cb=None, num_cb=10)

	Get a torrent file (see to get_file)

	Parameters:	
	fp (file) – The file pointer of where to put the torrent

	headers (dict) – Headers to be passed

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	
get_xml_acl(headers=None)

	

	
handle_encryption_headers(resp)

	

	
handle_version_headers(resp, force=False)

	

	
make_public(headers=None)

	

	
next()

	By providing a next method, the key object supports use as an iterator.
For example, you can now say:

	for bytes in key:

	write bytes to a file or whatever

All of the HTTP connection stuff is handled for you.

	
open(mode='r', headers=None, query_args=None, override_num_retries=None)

	

	
open_read(headers=None, query_args='', override_num_retries=None, response_headers=None)

	Open this key for reading

	Parameters:	
	headers (dict) – Headers to pass in the web request

	query_args (string [https://docs.python.org/2/library/string.html#module-string]) – Arguments to pass in the query string (ie, ‘torrent’)

	override_num_retries (int [https://docs.python.org/2/library/functions.html#int]) – If not None will override configured
num_retries parameter for underlying GET.

	response_headers (dict) – A dictionary containing HTTP headers/values
that will override any headers associated with
the stored object in the response.
See http://goo.gl/EWOPb for details.

	
open_write(headers=None, override_num_retries=None)

	Open this key for writing.
Not yet implemented

	Parameters:	
	headers (dict) – Headers to pass in the write request

	override_num_retries (int [https://docs.python.org/2/library/functions.html#int]) – If not None will override configured
num_retries parameter for underlying PUT.

	
provider

	

	
read(size=0)

	

	
send_file(fp, headers=None, cb=None, num_cb=10, query_args=None, chunked_transfer=False, size=None)

	Upload a file to a key into a bucket on S3.

	Parameters:	
	fp (file) – The file pointer to upload. The file pointer must point
point at the offset from which you wish to upload.
ie. if uploading the full file, it should point at the
start of the file. Normally when a file is opened for
reading, the fp will point at the first byte. See the
bytes parameter below for more info.

	headers (dict) – The headers to pass along with the PUT request

	cb (function) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb (int [https://docs.python.org/2/library/functions.html#int]) – (optional) If a callback is specified with the cb
parameter this parameter determines the granularity
of the callback by defining the maximum number of
times the callback will be called during the file
transfer. Providing a negative integer will cause
your callback to be called with each buffer read.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where you are splitting the
file up into different ranges to be uploaded. If not
specified, the default behaviour is to read all bytes
from the file pointer. Less bytes may be available.

	
set_acl(acl_str, headers=None)

	

	
set_canned_acl(acl_str, headers=None)

	

	
set_contents_from_file(fp, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, reduced_redundancy=False, query_args=None, encrypt_key=False, size=None)

	Store an object in S3 using the name of the Key object as the
key in S3 and the contents of the file pointed to by ‘fp’ as the
contents.

	Parameters:	
	fp (file) – the file whose contents to upload

	headers (dict) – Additional HTTP headers that will be sent with
the PUT request.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If this parameter is False, the method
will first check to see if an object exists in the
bucket with the same key. If it does, it won’t
overwrite it. The default value is True which will
overwrite the object.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with the cb
parameter this parameter determines the granularity
of the callback by defining the maximum number of
times the callback will be called during the
file transfer.

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the
new key in S3.

	md5 (A tuple containing the hexdigest version of the MD5
checksum of the file as the first element and the
Base64-encoded version of the plain checksum as the
second element. This is the same format returned by
the compute_md5 method.) – If you need to compute the MD5 for any reason prior
to upload, it’s silly to have to do it twice so this
param, if present, will be used as the MD5 values of
the file. Otherwise, the checksum will be computed.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will set the storage
class of the new Key to be
REDUCED_REDUNDANCY. The Reduced Redundancy
Storage (RRS) feature of S3, provides lower
redundancy at lower storage cost.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where you are splitting the
file up into different ranges to be uploaded. If not
specified, the default behaviour is to read all bytes
from the file pointer. Less bytes may be available.

	
set_contents_from_filename(filename, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, reduced_redundancy=False, encrypt_key=False)

	Store an object in S3 using the name of the Key object as the
key in S3 and the contents of the file named by ‘filename’.
See set_contents_from_file method for details about the
parameters.

	Parameters:	
	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the file that you want to put onto S3

	headers (dict) – Additional headers to pass along with the
request to AWS.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, replaces the contents of the file
if it already exists.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the
new key in S3.

	md5 (A tuple containing the hexdigest version of the MD5
checksum of the file as the first element and the
Base64-encoded version of the plain checksum as the
second element. This is the same format returned by
the compute_md5 method.) – If you need to compute the MD5 for any reason prior
to upload, it’s silly to have to do it twice so this
param, if present, will be used as the MD5 values
of the file. Otherwise, the checksum will be computed.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will set the storage
class of the new Key to be
REDUCED_REDUNDANCY. The Reduced Redundancy
Storage (RRS) feature of S3, provides lower
redundancy at lower storage cost.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	
set_contents_from_stream(fp, headers=None, replace=True, cb=None, num_cb=10, policy=None, reduced_redundancy=False, query_args=None, size=None)

	Store an object using the name of the Key object as the key in
cloud and the contents of the data stream pointed to by ‘fp’ as
the contents.
The stream object is not seekable and total size is not known.
This has the implication that we can’t specify the Content-Size and
Content-MD5 in the header. So for huge uploads, the delay in calculating
MD5 is avoided but with a penalty of inability to verify the integrity
of the uploaded data.

	Parameters:	
	fp (file) – the file whose contents are to be uploaded

	headers (dict) – additional HTTP headers to be sent with the PUT request.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If this parameter is False, the method will first check
to see if an object exists in the bucket with the same key. If it
does, it won’t overwrite it. The default value is True which will
overwrite the object.

	cb (function) – a callback function that will be called to report
progress on the upload. The callback should accept two integer
parameters, the first representing the number of bytes that have
been successfully transmitted to GS and the second representing the
total number of bytes that need to be transmitted.

	num_cb (int [https://docs.python.org/2/library/functions.html#int]) – (optional) If a callback is specified with the cb
parameter, this parameter determines the granularity of the callback
by defining the maximum number of times the callback will be called
during the file transfer.

	policy (boto.gs.acl.CannedACLStrings) – A canned ACL policy that will be applied to the new key
in GS.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will set the storage
class of the new Key to be
REDUCED_REDUNDANCY. The Reduced Redundancy
Storage (RRS) feature of S3, provides lower
redundancy at lower storage cost.

	size (int [https://docs.python.org/2/library/functions.html#int]) – (optional) The Maximum number of bytes to read from
the file pointer (fp). This is useful when uploading
a file in multiple parts where you are splitting the
file up into different ranges to be uploaded. If not
specified, the default behaviour is to read all bytes
from the file pointer. Less bytes may be available.

	
set_contents_from_string(s, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, reduced_redundancy=False, encrypt_key=False)

	Store an object in S3 using the name of the Key object as the
key in S3 and the string ‘s’ as the contents.
See set_contents_from_file method for details about the
parameters.

	Parameters:	
	headers (dict) – Additional headers to pass along with the
request to AWS.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, replaces the contents of the file if
it already exists.

	cb (int [https://docs.python.org/2/library/functions.html#int]) – a callback function that will be called to report
progress on the upload. The callback should accept
two integer parameters, the first representing the
number of bytes that have been successfully
transmitted to S3 and the second representing the
size of the to be transmitted object.

	num_cb – (optional) If a callback is specified with
the cb parameter this parameter determines the
granularity of the callback by defining
the maximum number of times the callback will
be called during the file transfer.

	policy (boto.s3.acl.CannedACLStrings) – A canned ACL policy that will be applied to the
new key in S3.

	md5 (A tuple containing the hexdigest version of the MD5
checksum of the file as the first element and the
Base64-encoded version of the plain checksum as the
second element. This is the same format returned by
the compute_md5 method.) – If you need to compute the MD5 for any reason prior
to upload, it’s silly to have to do it twice so this
param, if present, will be used as the MD5 values
of the file. Otherwise, the checksum will be computed.

	reduced_redundancy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, this will set the storage
class of the new Key to be
REDUCED_REDUNDANCY. The Reduced Redundancy
Storage (RRS) feature of S3, provides lower
redundancy at lower storage cost.

	encrypt_key (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the new copy of the object will
be encrypted on the server-side by S3 and
will be stored in an encrypted form while
at rest in S3.

	
set_metadata(name, value)

	

	
set_xml_acl(acl_str, headers=None)

	

	
startElement(name, attrs, connection)

	

	
update_metadata(d)

	

boto.s3.prefix

	
class boto.s3.prefix.Prefix(bucket=None, name=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.s3.user

	
class boto.s3.user.User(parent=None, id='', display_name='')

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
to_xml(element_name='Owner')

	

boto.s3.multipart

	
class boto.s3.multipart.CompleteMultiPartUpload(bucket=None)

	Represents a completed MultiPart Upload. Contains the
following useful attributes:

	location - The URI of the completed upload

	
	bucket_name - The name of the bucket in which the upload

	is contained

	key_name - The name of the new, completed key

	etag - The MD5 hash of the completed, combined upload

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.s3.multipart.MultiPartUpload(bucket=None)

	Represents a MultiPart Upload operation.

	
cancel_upload()

	Cancels a MultiPart Upload operation. The storage consumed by
any previously uploaded parts will be freed. However, if any
part uploads are currently in progress, those part uploads
might or might not succeed. As a result, it might be necessary
to abort a given multipart upload multiple times in order to
completely free all storage consumed by all parts.

	
complete_upload()

	Complete the MultiPart Upload operation. This method should
be called when all parts of the file have been successfully
uploaded to S3.

	Return type:	boto.s3.multipart.CompletedMultiPartUpload

	Returns:	An object representing the completed upload.

	
copy_part_from_key(src_bucket_name, src_key_name, part_num, start=None, end=None)

	Copy another part of this MultiPart Upload.

	Parameters:	
	src_bucket_name (string [https://docs.python.org/2/library/string.html#module-string]) – Name of the bucket containing the source key

	src_key_name (string [https://docs.python.org/2/library/string.html#module-string]) – Name of the source key

	part_num (int [https://docs.python.org/2/library/functions.html#int]) – The number of this part.

	start (int [https://docs.python.org/2/library/functions.html#int]) – Zero-based byte offset to start copying from

	end (int [https://docs.python.org/2/library/functions.html#int]) – Zero-based byte offset to copy to

	
endElement(name, value, connection)

	

	
get_all_parts(max_parts=None, part_number_marker=None)

	Return the uploaded parts of this MultiPart Upload. This is
a lower-level method that requires you to manually page through
results. To simplify this process, you can just use the
object itself as an iterator and it will automatically handle
all of the paging with S3.

	
startElement(name, attrs, connection)

	

	
to_xml()

	

	
upload_part_from_file(fp, part_num, headers=None, replace=True, cb=None, num_cb=10, policy=None, md5=None, size=None)

	Upload another part of this MultiPart Upload.

	Parameters:	
	fp (file) – The file object you want to upload.

	part_num (int [https://docs.python.org/2/library/functions.html#int]) – The number of this part.

The other parameters are exactly as defined for the
boto.s3.key.Key set_contents_from_file method.

	
class boto.s3.multipart.Part(bucket=None)

	Represents a single part in a MultiPart upload.
Attributes include:

	part_number - The integer part number

	last_modified - The last modified date of this part

	etag - The MD5 hash of this part

	size - The size, in bytes, of this part

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
boto.s3.multipart.part_lister(mpupload, part_number_marker=None)

	A generator function for listing parts of a multipart upload.

boto.s3.resumable_download_handler

	
class boto.s3.resumable_download_handler.ByteTranslatingCallbackHandler(proxied_cb, download_start_point)

	Proxy class that translates progress callbacks made by
boto.s3.Key.get_file(), taking into account that we’re resuming
a download.

	
call(total_bytes_uploaded, total_size)

	

	
class boto.s3.resumable_download_handler.ResumableDownloadHandler(tracker_file_name=None, num_retries=None)

	Handler for resumable downloads.

Constructor. Instantiate once for each downloaded file.

	Parameters:	
	tracker_file_name (string [https://docs.python.org/2/library/string.html#module-string]) – optional file name to save tracking info
about this download. If supplied and the current process fails
the download, it can be retried in a new process. If called
with an existing file containing an unexpired timestamp,
we’ll resume the transfer for this file; else we’ll start a
new resumable download.

	num_retries (int [https://docs.python.org/2/library/functions.html#int]) – the number of times we’ll re-try a resumable
download making no progress. (Count resets every time we get
progress, so download can span many more than this number of
retries.)

	
ETAG_REGEX = '([a-z0-9]{32})\n'

	

	
RETRYABLE_EXCEPTIONS = (<class 'httplib.HTTPException'>, <type 'exceptions.IOError'>, <class 'socket.error'>, <class 'socket.gaierror'>)

	

	
get_file(key, fp, headers, cb=None, num_cb=10, torrent=False, version_id=None)

	Retrieves a file from a Key
:type key: boto.s3.key.Key or subclass
:param key: The Key object from which upload is to be downloaded

	Parameters:	
	fp (file) – File pointer into which data should be downloaded

	cb (function) – (optional) a callback function that will be called to report
progress on the download. The callback should accept two integer
parameters, the first representing the number of bytes that have
been successfully transmitted from the storage service and
the second representing the total number of bytes that need
to be transmitted.

	num_cb (int [https://docs.python.org/2/library/functions.html#int]) – (optional) If a callback is specified with the cb
parameter this parameter determines the granularity of the callback
by defining the maximum number of times the callback will be
called during the file transfer.

	torrent (bool [https://docs.python.org/2/library/functions.html#bool]) – Flag for whether to get a torrent for the file

	version_id (string [https://docs.python.org/2/library/string.html#module-string]) – The version ID (optional)

	Param:	headers to send when retrieving the files

	Raises ResumableDownloadException if a problem occurs during

	the transfer.

	
boto.s3.resumable_download_handler.get_cur_file_size(fp, position_to_eof=False)

	Returns size of file, optionally leaving fp positioned at EOF.

boto.s3.deletemarker

	
class boto.s3.deletemarker.DeleteMarker(bucket=None, name=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

SDB Reference

In addition to what is seen below, boto includes an abstraction
layer for SimpleDB that may be used:

	SimpleDB DB (Maintained, but little documentation)

boto.sdb

	
boto.sdb.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.sdb.connection.SDBConnection.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.sdb.connection.SDBConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.sdb.get_region(region_name, **kw_params)

	Find and return a boto.sdb.regioninfo.RegionInfo object
given a region name.

	Type:	str

	Param:	The name of the region.

	Return type:	boto.sdb.regioninfo.RegionInfo

	Returns:	The RegionInfo object for the given region or None if
an invalid region name is provided.

	
boto.sdb.regions()

	Get all available regions for the SDB service.

	Return type:	list

	Returns:	A list of boto.sdb.regioninfo.RegionInfo instances

boto.sdb.connection

	
class boto.sdb.connection.ItemThread(name, domain_name, item_names)

	A threaded Item retriever utility class.
Retrieved Item objects are stored in the
items instance variable after run() is called.

Tip

The item retrieval will not start until
the run() method is called.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – A thread name. Used for identification.

	domain_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of a SimpleDB
Domain

	item_names (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – The name(s) of the items to retrieve from the specified
Domain.

	Variables:	items (list) – A list of items retrieved. Starts as empty list.

	
run()

	Start the threaded retrieval of items. Populates the
items list with Item objects.

	
class boto.sdb.connection.SDBConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', converter=None, security_token=None)

	This class serves as a gateway to your SimpleDB region (defaults to
us-east-1). Methods within allow access to SimpleDB
Domain objects and their associated
Item objects.

Tip

While you may instantiate this class directly, it may be easier to
go through boto.connect_sdb().

For any keywords that aren’t documented, refer to the parent class,
boto.connection.AWSAuthConnection. You can avoid having
to worry about these keyword arguments by instantiating these objects
via boto.connect_sdb().

	Parameters:	region (boto.sdb.regioninfo.SDBRegionInfo) – Explicitly specify a region. Defaults to us-east-1
if not specified. You may also specify the region in your boto.cfg:

[SDB]
region = eu-west-1

	
APIVersion = '2009-04-15'

	

	
DefaultRegionEndpoint = 'sdb.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of SDBResponseError

	
batch_delete_attributes(domain_or_name, items)

	Delete multiple items in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	items (dict or dict-like object) – A dictionary-like object. The keys of the dictionary are
the item names and the values are either:

	dictionaries of attribute names/values, exactly the
same as the attribute_names parameter of the scalar
put_attributes call. The attribute name/value pairs
will only be deleted if they match the name/value
pairs passed in.

	None which means that all attributes associated
with the item should be deleted.

	Returns:	True if successful

	
batch_put_attributes(domain_or_name, items, replace=True)

	Store attributes for multiple items in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	items (dict or dict-like object) – A dictionary-like object. The keys of the dictionary are
the item names and the values are themselves dictionaries
of attribute names/values, exactly the same as the
attribute_names parameter of the scalar put_attributes
call.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the attribute values passed in will replace
existing values or will be added as addition values.
Defaults to True.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
create_domain(domain_name)

	Create a SimpleDB domain.

	Parameters:	domain_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new domain

	Return type:	boto.sdb.domain.Domain object

	Returns:	The newly created domain

	
delete_attributes(domain_or_name, item_name, attr_names=None, expected_value=None)

	Delete attributes from a given item in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being
deleted.

	attributes (dict, list or boto.sdb.item.Item) – Either a list containing attribute names which
will cause all values associated with that attribute
name to be deleted or a dict or Item containing the
attribute names and keys and list of values to
delete as the value. If no value is supplied,
all attribute name/values for the item will be
deleted.

	expected_value (list) – If supplied, this is a list or tuple consisting
of a single attribute name and expected value. The list can be
of the form:

	[‘name’, ‘value’]

In which case the call will first verify that the attribute “name”
of this item has a value of “value”. If it does, the delete
will proceed, otherwise a ConditionalCheckFailed error will be
returned. The list can also be of the form:

	[‘name’, True|False]

which will simply check for the existence (True) or
non-existence (False) of the attribute.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_domain(domain_or_name)

	Delete a SimpleDB domain.

Caution

This will delete the domain and all items within the domain.

	Parameters:	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
domain_metadata(domain_or_name)

	Get the Metadata for a SimpleDB domain.

	Parameters:	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	Return type:	boto.sdb.domain.DomainMetaData object

	Returns:	The newly created domain metadata object

	
get_all_domains(max_domains=None, next_token=None)

	Returns a boto.resultset.ResultSet containing
all boto.sdb.domain.Domain objects associated with
this connection’s Access Key ID.

	Parameters:	
	max_domains (int [https://docs.python.org/2/library/functions.html#int]) – Limit the returned
ResultSet to the specified
number of members.

	next_token (str [https://docs.python.org/2/library/functions.html#str]) – A token string that was returned in an
earlier call to this method as the next_token attribute
on the returned ResultSet
object. This attribute is set if there are more than Domains than
the value specified in the max_domains keyword. Pass the
next_token value from you earlier query in this keyword to
get the next ‘page’ of domains.

	
get_attributes(domain_or_name, item_name, attribute_names=None, consistent_read=False, item=None)

	Retrieve attributes for a given item in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are
being retrieved.

	attribute_names (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – An attribute name or list of attribute names.
This parameter is optional. If not supplied, all attributes will
be retrieved for the item.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – When set to true, ensures that the most recent
data is returned.

	item (boto.sdb.item.Item) – Instead of instantiating a new Item object, you may
specify one to update.

	Return type:	boto.sdb.item.Item

	Returns:	An Item with the requested attribute name/values set on it

	
get_domain(domain_name, validate=True)

	Retrieves a boto.sdb.domain.Domain object whose name
matches domain_name.

	Parameters:	
	domain_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the domain to retrieve

	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – When True, check to see if the domain
actually exists. If False, blindly return a
Domain object with the
specified name set.

	Raises:	boto.exception.SDBResponseError if validate is
True and no match could be found.

	Return type:	boto.sdb.domain.Domain

	Returns:	The requested domain

	
get_domain_and_name(domain_or_name)

	Given a str or boto.sdb.domain.Domain, return a
tuple with the following members (in order):

	In instance of boto.sdb.domain.Domain for the requested
domain

	The domain’s name as a str

	Parameters:	domain_or_name (str or boto.sdb.domain.Domain) – The domain or domain name to get the domain
and name for.

	Raises:	boto.exception.SDBResponseError when an invalid
domain name is specified.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

	Returns:	A tuple with contents outlined as per above.

	
get_usage()

	Returns the BoxUsage (in USD) accumulated on this specific SDBConnection
instance.

Tip

This can be out of date, and should only be treated as a
rough estimate. Also note that this estimate only applies to the
requests made on this specific connection instance. It is by
no means an account-wide estimate.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

	Returns:	The accumulated BoxUsage of all requests made on the connection.

	
lookup(domain_name, validate=True)

	Lookup an existing SimpleDB domain. This differs from
get_domain() in that None is returned if validate is
True and no match was found (instead of raising an exception).

	Parameters:	
	domain_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the domain to retrieve

	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a None value will be returned
if the specified domain can’t be found. If False, a
Domain object will be dumbly
returned, regardless of whether it actually exists.

	Return type:	boto.sdb.domain.Domain object or None

	Returns:	The Domain object or None if the domain does not exist.

	
print_usage()

	Print the BoxUsage and approximate costs of all requests made on
this specific SDBConnection instance.

Tip

This can be out of date, and should only be treated as a
rough estimate. Also note that this estimate only applies to the
requests made on this specific connection instance. It is by
no means an account-wide estimate.

	
put_attributes(domain_or_name, item_name, attributes, replace=True, expected_value=None)

	Store attributes for a given item in a domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object.) – Either the name of a domain or a Domain object

	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being
stored.

	attribute_names (dict or dict-like object) – The name/value pairs to store as attributes

	expected_value (list) – If supplied, this is a list or tuple consisting
of a single attribute name and expected value. The list can be
of the form:

	[‘name’, ‘value’]

In which case the call will first verify that the attribute “name”
of this item has a value of “value”. If it does, the delete
will proceed, otherwise a ConditionalCheckFailed error will be
returned. The list can also be of the form:

	[‘name’, True|False]

which will simply check for the existence (True) or
non-existence (False) of the attribute.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the attribute values passed in will replace
existing values or will be added as addition values.
Defaults to True.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
select(domain_or_name, query='', next_token=None, consistent_read=False)

	Returns a set of Attributes for item names within domain_name that
match the query. The query must be expressed in using the SELECT
style syntax rather than the original SimpleDB query language.
Even though the select request does not require a domain object,
a domain object must be passed into this method so the Item objects
returned can point to the appropriate domain.

	Parameters:	
	domain_or_name (string or boto.sdb.domain.Domain object) – Either the name of a domain or a Domain object

	query (string [https://docs.python.org/2/library/string.html#module-string]) – The SimpleDB query to be performed.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – When set to true, ensures that the most recent
data is returned.

	Return type:	ResultSet

	Returns:	An iterator containing the results.

	
set_item_cls(cls)

	While the default item class is boto.sdb.item.Item, this
default may be overridden. Use this method to change a connection’s
item class.

	Parameters:	cls (object [https://docs.python.org/2/library/functions.html#object]) – The new class to set as this connection’s item
class. See the default item class for inspiration as to what your
replacement should/could look like.

boto.sdb.domain

Represents an SDB Domain

	
class boto.sdb.domain.Domain(connection=None, name=None)

	
	
batch_delete_attributes(items)

	Delete multiple items in this domain.

	Parameters:	items (dict or dict-like object) – A dictionary-like object. The keys of the dictionary are
the item names and the values are either:

	dictionaries of attribute names/values, exactly the
same as the attribute_names parameter of the scalar
put_attributes call. The attribute name/value pairs
will only be deleted if they match the name/value
pairs passed in.

	None which means that all attributes associated
with the item should be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
batch_put_attributes(items, replace=True)

	Store attributes for multiple items.

	Parameters:	
	items (dict or dict-like object) – A dictionary-like object. The keys of the dictionary are
the item names and the values are themselves dictionaries
of attribute names/values, exactly the same as the
attribute_names parameter of the scalar put_attributes
call.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the attribute values passed in will replace
existing values or will be added as addition values.
Defaults to True.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete()

	Delete this domain, and all items under it

	
delete_attributes(item_name, attributes=None, expected_values=None)

	Delete attributes from a given item.

	Parameters:	
	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being deleted.

	attributes (dict, list or boto.sdb.item.Item) – Either a list containing attribute names which will cause
all values associated with that attribute name to be deleted or
a dict or Item containing the attribute names and keys and list
of values to delete as the value. If no value is supplied,
all attribute name/values for the item will be deleted.

	expected_value (list) – If supplied, this is a list or tuple consisting
of a single attribute name and expected value. The list can be of
the form:

	[‘name’, ‘value’]

In which case the call will first verify that the attribute “name”
of this item has a value of “value”. If it does, the delete
will proceed, otherwise a ConditionalCheckFailed error will be
returned. The list can also be of the form:

	[‘name’, True|False]

which will simply check for the existence (True) or
non-existence (False) of the attribute.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_item(item)

	

	
endElement(name, value, connection)

	

	
from_xml(doc)

	Load this domain based on an XML document

	
get_attributes(item_name, attribute_name=None, consistent_read=False, item=None)

	Retrieve attributes for a given item.

	Parameters:	
	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being retrieved.

	attribute_names (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – An attribute name or list of attribute names. This
parameter is optional. If not supplied, all attributes
will be retrieved for the item.

	Return type:	boto.sdb.item.Item

	Returns:	An Item mapping type containing the requested attribute name/values

	
get_item(item_name, consistent_read=False)

	Retrieves an item from the domain, along with all of its attributes.

	Parameters:	
	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item to retrieve.

	consistent_read (bool [https://docs.python.org/2/library/functions.html#bool]) – When set to true, ensures that the most
recent data is returned.

	Return type:	boto.sdb.item.Item or None

	Returns:	The requested item, or None if there was no match found

	
get_metadata()

	

	
new_item(item_name)

	

	
put_attributes(item_name, attributes, replace=True, expected_value=None)

	Store attributes for a given item.

	Parameters:	
	item_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the item whose attributes are being stored.

	attribute_names (dict or dict-like object) – The name/value pairs to store as attributes

	expected_value (list) – If supplied, this is a list or tuple consisting
of a single attribute name and expected value. The list can be
of the form:

	[‘name’, ‘value’]

In which case the call will first verify that the attribute
“name” of this item has a value of “value”. If it does, the delete
will proceed, otherwise a ConditionalCheckFailed error will be
returned. The list can also be of the form:

	[‘name’, True|False]

which will simply check for the existence (True) or non-existence
(False) of the attribute.

	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether the attribute values passed in will replace
existing values or will be added as addition values.
Defaults to True.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
select(query='', next_token=None, consistent_read=False, max_items=None)

	Returns a set of Attributes for item names within domain_name that match the query.
The query must be expressed in using the SELECT style syntax rather than the
original SimpleDB query language.

	Parameters:	query (string [https://docs.python.org/2/library/string.html#module-string]) – The SimpleDB query to be performed.

	Return type:	iter [https://docs.python.org/2/library/functions.html#iter]

	Returns:	An iterator containing the results. This is actually a generator
function that will iterate across all search results, not just the
first page.

	
startElement(name, attrs, connection)

	

	
to_xml(f=None)

	Get this domain as an XML DOM Document
:param f: Optional File to dump directly to
:type f: File or Stream

	Returns:	File object where the XML has been dumped to

	Return type:	file

	
class boto.sdb.domain.DomainDumpParser(domain)

	SAX parser for a domain that has been dumped

	
characters(ch)

	

	
endElement(name)

	

	
startElement(name, attrs)

	

	
class boto.sdb.domain.DomainMetaData(domain=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.sdb.domain.UploaderThread(domain)

	Uploader Thread

	
run()

	

boto.sdb.item

	
class boto.sdb.item.Item(domain, name='', active=False)

	A dict sub-class that serves as an object representation of a
SimpleDB item. An item in SDB is similar to a row in a relational
database. Items belong to a Domain,
which is similar to a table in a relational database.

The keys on instances of this object correspond to attributes that are
stored on the SDB item.

Tip

While it is possible to instantiate this class directly, you may
want to use the convenience methods on boto.sdb.domain.Domain
for that purpose. For example, boto.sdb.domain.Domain.get_item().

	Parameters:	
	domain (boto.sdb.domain.Domain) – The domain that this item belongs to.

	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of this item. This name will be used when
querying for items using methods like
boto.sdb.domain.Domain.get_item()

	
add_value(key, value)

	Helps set or add to attributes on this item. If you are adding a new
attribute that has yet to be set, it will simply create an attribute
named key with your given value as its value. If you are
adding a value to an existing attribute, this method will convert the
attribute to a list (if it isn’t already) and append your new value
to said list.

For clarification, consider the following interactive session:

>>> item = some_domain.get_item('some_item')
>>> item.has_key('some_attr')
False
>>> item.add_value('some_attr', 1)
>>> item['some_attr']
1
>>> item.add_value('some_attr', 2)
>>> item['some_attr']
[1, 2]

	Parameters:	
	key (str [https://docs.python.org/2/library/functions.html#str]) – The attribute to add a value to.

	value (object [https://docs.python.org/2/library/functions.html#object]) – The value to set or append to the attribute.

	
decode_value(value)

	

	
delete()

	Deletes this item in SDB.

Note

This local Python object remains in its current state
after deletion, this only deletes the remote item in SDB.

	
endElement(name, value, connection)

	

	
load()

	Loads or re-loads this item’s attributes from SDB.

Warning

If you have changed attribute values on an Item instance,
this method will over-write the values if they are different in
SDB. For any local attributes that don’t yet exist in SDB,
they will be safe.

	
save(replace=True)

	Saves this item to SDB.

	Parameters:	replace (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, delete any attributes on the remote
SDB item that have a None value on this object.

	
startElement(name, attrs, connection)

	

boto.sdb.queryresultset

	
class boto.sdb.queryresultset.QueryResultSet(domain=None, query='', max_items=None, attr_names=None)

	

	
class boto.sdb.queryresultset.SelectResultSet(domain=None, query='', max_items=None, next_token=None, consistent_read=False)

	
	
next()

	

	
boto.sdb.queryresultset.query_lister(domain, query='', max_items=None, attr_names=None)

	

	
boto.sdb.queryresultset.select_lister(domain, query='', max_items=None)

	

services

boto.services

boto.services.bs

	
class boto.services.bs.BS

	
	
Commands = {'reset': 'Clear input queue and output bucket', 'status': 'Report on the status of the service buckets and queues', 'batches': 'List all batches stored in current output_domain', 'retrieve': 'Retrieve output generated by a batch', 'submit': 'Submit local files to the service', 'start': 'Start the service'}

	

	
Usage = 'usage: %prog [options] config_file command'

	

	
do_batches()

	

	
do_reset()

	

	
do_retrieve()

	

	
do_start()

	

	
do_status()

	

	
do_submit()

	

	
main()

	

	
print_command_help()

	

boto.services.message

	
class boto.services.message.ServiceMessage(queue=None, body=None, xml_attrs=None)

	
	
for_key(key, params=None, bucket_name=None)

	

boto.services.result

	
class boto.services.result.ResultProcessor(batch_name, sd, mimetype_files=None)

	
	
LogFileName = 'log.csv'

	

	
calculate_stats(msg)

	

	
get_results(path, get_file=True, delete_msg=True)

	

	
get_results_from_bucket(path)

	

	
get_results_from_domain(path, get_file=True)

	

	
get_results_from_queue(path, get_file=True, delete_msg=True)

	

	
log_message(msg, path)

	

	
process_record(record, path, get_file=True)

	

boto.services.service

	
class boto.services.service.Service(config_file=None, mimetype_files=None)

	
	
ProcessingTime = 60

	

	
cleanup()

	

	
delete_message(message)

	

	
get_file(message)

	

	
main(notify=False)

	

	
process_file(in_file_name, msg)

	

	
put_file(bucket_name, file_path, key_name=None)

	

	
read_message()

	

	
save_results(results, input_message, output_message)

	

	
shutdown()

	

	
split_key(key)

	

	
write_message(message)

	

boto.services.servicedef

	
class boto.services.servicedef.ServiceDef(config_file, aws_access_key_id=None, aws_secret_access_key=None)

	
	
get(name, default=None)

	

	
get_obj(name)

	Returns the AWS object associated with a given option.

The heuristics used are a bit lame. If the option name contains
the word ‘bucket’ it is assumed to be an S3 bucket, if the name
contains the word ‘queue’ it is assumed to be an SQS queue and
if it contains the word ‘domain’ it is assumed to be a SimpleDB
domain. If the option name specified does not exist in the
config file or if the AWS object cannot be retrieved this
returns None.

	
getbool(option, default=False)

	

	
getint(option, default=0)

	

	
has_option(option)

	

boto.services.sonofmmm

	
class boto.services.sonofmmm.SonOfMMM(config_file=None)

	
	
process_file(in_file_name, msg)

	

	
queue_files()

	

	
shutdown()

	

boto.services.submit

	
class boto.services.submit.Submitter(sd)

	
	
get_key_name(fullpath, prefix)

	

	
submit_file(path, metadata=None, cb=None, num_cb=0, prefix='/')

	

	
submit_path(path, tags=None, ignore_dirs=None, cb=None, num_cb=0, status=False, prefix='/')

	

	
write_message(key, metadata)

	

SES

boto.ses

	
boto.ses.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.sns.connection.SESConnection.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.sns.connection.SESConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.ses.get_region(region_name, **kw_params)

	Find and return a boto.regioninfo.RegionInfo object
given a region name.

	Type:	str

	Param:	The name of the region.

	Return type:	boto.regioninfo.RegionInfo

	Returns:	The RegionInfo object for the given region or None if
an invalid region name is provided.

	
boto.ses.regions()

	Get all available regions for the SES service.

	Return type:	list

	Returns:	A list of boto.regioninfo.RegionInfo instances

boto.ses.connection

	
class boto.ses.connection.SESConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/')

	
	
APIVersion = '2010-12-01'

	

	
DefaultRegionEndpoint = 'email.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of BotoServerError

	
delete_verified_email_address(email_address)

	Deletes the specified email address from the list of verified
addresses.

	Parameters:	email_address – The email address to be removed from the list of
verified addreses.

	Return type:	dict

	Returns:	A DeleteVerifiedEmailAddressResponse structure. Note that
keys must be unicode strings.

	
get_send_quota()

	Fetches the user’s current activity limits.

	Return type:	dict

	Returns:	A GetSendQuotaResponse structure. Note that keys must be
unicode strings.

	
get_send_statistics()

	Fetches the user’s sending statistics. The result is a list of data
points, representing the last two weeks of sending activity.

Each data point in the list contains statistics for a 15-minute
interval.

	Return type:	dict

	Returns:	A GetSendStatisticsResponse structure. Note that keys must be
unicode strings.

	
list_verified_email_addresses()

	Fetch a list of the email addresses that have been verified.

	Return type:	dict

	Returns:	A ListVerifiedEmailAddressesResponse structure. Note that
keys must be unicode strings.

	
send_email(source, subject, body, to_addresses, cc_addresses=None, bcc_addresses=None, format='text', reply_addresses=None, return_path=None, text_body=None, html_body=None)

	Composes an email message based on input data, and then immediately
queues the message for sending.

	Parameters:	
	source (string [https://docs.python.org/2/library/string.html#module-string]) – The sender’s email address.

	subject (string [https://docs.python.org/2/library/string.html#module-string]) – The subject of the message: A short summary of the
content, which will appear in the recipient’s inbox.

	body (string [https://docs.python.org/2/library/string.html#module-string]) – The message body.

	to_addresses (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – The To: field(s) of the message.

	cc_addresses (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – The CC: field(s) of the message.

	bcc_addresses (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – The BCC: field(s) of the message.

	format (string [https://docs.python.org/2/library/string.html#module-string]) – The format of the message’s body, must be either “text”
or “html”.

	reply_addresses (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – The reply-to email address(es) for the
message. If the recipient replies to the
message, each reply-to address will
receive the reply.

	return_path (string [https://docs.python.org/2/library/string.html#module-string]) – The email address to which bounce notifications are
to be forwarded. If the message cannot be delivered
to the recipient, then an error message will be
returned from the recipient’s ISP; this message will
then be forwarded to the email address specified by
the ReturnPath parameter.

	text_body (string [https://docs.python.org/2/library/string.html#module-string]) – The text body to send with this email.

	html_body (string [https://docs.python.org/2/library/string.html#module-string]) – The html body to send with this email.

	
send_raw_email(raw_message, source=None, destinations=None)

	Sends an email message, with header and content specified by the
client. The SendRawEmail action is useful for sending multipart MIME
emails, with attachments or inline content. The raw text of the message
must comply with Internet email standards; otherwise, the message
cannot be sent.

	Parameters:	
	source (string [https://docs.python.org/2/library/string.html#module-string]) – The sender’s email address. Amazon’s docs say:

If you specify the Source parameter, then bounce notifications and
complaints will be sent to this email address. This takes precedence
over any Return-Path header that you might include in the raw text of
the message.

	raw_message (string [https://docs.python.org/2/library/string.html#module-string]) – The raw text of the message. The client is
responsible for ensuring the following:

	Message must contain a header and a body, separated by a blank line.

	All required header fields must be present.

	Each part of a multipart MIME message must be formatted properly.

	MIME content types must be among those supported by Amazon SES.
Refer to the Amazon SES Developer Guide for more details.

	Content must be base64-encoded, if MIME requires it.

	destinations (list of strings or string [https://docs.python.org/2/library/string.html#module-string]) – A list of destinations for the message.

	
verify_email_address(email_address)

	Verifies an email address. This action causes a confirmation email
message to be sent to the specified address.

	Parameters:	email_address – The email address to be verified.

	Return type:	dict

	Returns:	A VerifyEmailAddressResponse structure. Note that keys must
be unicode strings.

SNS

boto.sns

	
boto.sns.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.sns.connection.SNSConnection.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.sns.connection.SNSConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.sns.get_region(region_name, **kw_params)

	Find and return a boto.regioninfo.RegionInfo object
given a region name.

	Type:	str

	Param:	The name of the region.

	Return type:	boto.regioninfo.RegionInfo

	Returns:	The RegionInfo object for the given region or None if
an invalid region name is provided.

	
boto.sns.regions()

	Get all available regions for the SNS service.

	Return type:	list

	Returns:	A list of boto.regioninfo.RegionInfo instances

	
class boto.sns.SNSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', security_token=None)

	
	
APIVersion = '2010-03-31'

	

	
DefaultRegionEndpoint = 'sns.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
add_permission(topic, label, account_ids, actions)

	Adds a statement to a topic’s access control policy, granting
access for the specified AWS accounts to the specified actions.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic.

	label (string [https://docs.python.org/2/library/string.html#module-string]) – A unique identifier for the new policy statement.

	account_ids (list of strings) – The AWS account ids of the users who will be
give access to the specified actions.

	actions (list of strings) – The actions you want to allow for each of the
specified principal(s).

	
confirm_subscription(topic, token, authenticate_on_unsubscribe=False)

	Get properties of a Topic

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the new topic.

	token (string [https://docs.python.org/2/library/string.html#module-string]) – Short-lived token sent to and endpoint during
the Subscribe operation.

	authenticate_on_unsubscribe (bool [https://docs.python.org/2/library/functions.html#bool]) – Optional parameter indicating
that you wish to disable
unauthenticated unsubscription
of the subscription.

	
create_topic(topic)

	Create a new Topic.

	Parameters:	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new topic.

	
delete_topic(topic)

	Delete an existing topic

	Parameters:	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic

	
get_all_subscriptions(next_token=None)

	Get list of all subscriptions.

	Parameters:	next_token (string [https://docs.python.org/2/library/string.html#module-string]) – Token returned by the previous call to
this method.

	
get_all_subscriptions_by_topic(topic, next_token=None)

	Get list of all subscriptions to a specific topic.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic for which you wish to
find subscriptions.

	next_token (string [https://docs.python.org/2/library/string.html#module-string]) – Token returned by the previous call to
this method.

	
get_all_topics(next_token=None)

	

	Parameters:	next_token (string [https://docs.python.org/2/library/string.html#module-string]) – Token returned by the previous call to
this method.

	
get_topic_attributes(topic)

	Get attributes of a Topic

	Parameters:	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic.

	
publish(topic, message, subject=None)

	Get properties of a Topic

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the new topic.

	message (string [https://docs.python.org/2/library/string.html#module-string]) – The message you want to send to the topic.
Messages must be UTF-8 encoded strings and
be at most 4KB in size.

	subject (string [https://docs.python.org/2/library/string.html#module-string]) – Optional parameter to be used as the “Subject”
line of the email notifications.

	
remove_permission(topic, label)

	Removes a statement from a topic’s access control policy.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic.

	label (string [https://docs.python.org/2/library/string.html#module-string]) – A unique identifier for the policy statement
to be removed.

	
set_topic_attributes(topic, attr_name, attr_value)

	Get attributes of a Topic

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the topic.

	attr_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the attribute you want to set.
Only a subset of the topic’s attributes are mutable.
Valid values: Policy | DisplayName

	attr_value (string [https://docs.python.org/2/library/string.html#module-string]) – The new value for the attribute.

	
subscribe(topic, protocol, endpoint)

	Subscribe to a Topic.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new topic.

	protocol (string [https://docs.python.org/2/library/string.html#module-string]) – The protocol used to communicate with
the subscriber. Current choices are:
email|email-json|http|https|sqs

	endpoint (string [https://docs.python.org/2/library/string.html#module-string]) – The location of the endpoint for
the subscriber.
* For email, this would be a valid email address
* For email-json, this would be a valid email address
* For http, this would be a URL beginning with http
* For https, this would be a URL beginning with https
* For sqs, this would be the ARN of an SQS Queue

	
subscribe_sqs_queue(topic, queue)

	Subscribe an SQS queue to a topic.

This is convenience method that handles most of the complexity involved
in using ans SQS queue as an endpoint for an SNS topic. To achieve this
the following operations are performed:

	The correct ARN is constructed for the SQS queue and that ARN is
then subscribed to the topic.

	A JSON policy document is contructed that grants permission to
the SNS topic to send messages to the SQS queue.

	This JSON policy is then associated with the SQS queue using
the queue’s set_attribute method. If the queue already has
a policy associated with it, this process will add a Statement to
that policy. If no policy exists, a new policy will be created.

	Parameters:	
	topic (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the new topic.

	queue (A boto Queue object) – The queue you wish to subscribe to the SNS Topic.

	
unsubscribe(subscription)

	Allows endpoint owner to delete subscription.
Confirmation message will be delivered.

	Parameters:	subscription (string [https://docs.python.org/2/library/string.html#module-string]) – The ARN of the subscription to be deleted.

SQS

boto.sqs

	
boto.sqs.connect_to_region(region_name, **kw_params)

	

	
boto.sqs.regions()

	Get all available regions for the SQS service.

	Return type:	list

	Returns:	A list of boto.ec2.regioninfo.RegionInfo

boto.sqs.attributes

Represents an SQS Attribute Name/Value set

	
class boto.sqs.attributes.Attributes(parent)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.sqs.connection

	
class boto.sqs.connection.SQSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', security_token=None)

	A Connection to the SQS Service.

	
APIVersion = '2011-10-01'

	

	
DefaultContentType = 'text/plain'

	

	
DefaultRegionEndpoint = 'sqs.us-east-1.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
ResponseError

	alias of SQSError

	
add_permission(queue, label, aws_account_id, action_name)

	Add a permission to a queue.

	Parameters:	
	queue (boto.sqs.queue.Queue) – The queue object

	label (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – A unique identification of the permission you are setting.
Maximum of 80 characters [0-9a-zA-Z_-]
Example, AliceSendMessage

	principal_id – The AWS account number of the principal who will
be given permission. The principal must have
an AWS account, but does not need to be signed
up for Amazon SQS. For information
about locating the AWS account identification.

	action_name (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The action. Valid choices are:
*|SendMessage|ReceiveMessage|DeleteMessage|
ChangeMessageVisibility|GetQueueAttributes

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
change_message_visibility(queue, receipt_handle, visibility_timeout)

	Extends the read lock timeout for the specified message from
the specified queue to the specified value.

	Parameters:	
	queue (A boto.sqs.queue.Queue object) – The Queue from which messages are read.

	queue – The receipt handle associated with the message whose
visibility timeout will be changed.

	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The new value of the message’s visibility
timeout in seconds.

	
create_queue(queue_name, visibility_timeout=None)

	Create an SQS Queue.

	Parameters:	
	queue_name (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The name of the new queue. Names are scoped to
an account and need to be unique within that
account. Calling this method on an existing
queue name will not return an error from SQS
unless the value for visibility_timeout is
different than the value of the existing queue
of that name. This is still an expensive operation,
though, and not the preferred way to check for
the existence of a queue. See the
boto.sqs.connection.SQSConnection.lookup() method.

	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The default visibility timeout for all
messages written in the queue. This can
be overridden on a per-message.

	Return type:	boto.sqs.queue.Queue

	Returns:	The newly created queue.

	
delete_message(queue, message)

	Delete a message from a queue.

	Parameters:	
	queue (A boto.sqs.queue.Queue object) – The Queue from which messages are read.

	message (A boto.sqs.message.Message object) – The Message to be deleted

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
delete_message_from_handle(queue, receipt_handle)

	Delete a message from a queue, given a receipt handle.

	Parameters:	
	queue (A boto.sqs.queue.Queue object) – The Queue from which messages are read.

	receipt_handle (str [https://docs.python.org/2/library/functions.html#str]) – The receipt handle for the message

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
delete_queue(queue, force_deletion=False)

	Delete an SQS Queue.

	Parameters:	
	queue (A Queue object) – The SQS queue to be deleted

	force_deletion (Boolean) – Normally, SQS will not delete a queue that
contains messages. However, if the
force_deletion argument is True, the
queue will be deleted regardless of whether
there are messages in the queue or not.
USE WITH CAUTION. This will delete all
messages in the queue as well.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if the command succeeded, False otherwise

	
get_all_queues(prefix='')

	Retrieves all queues.

	Parameters:	prefix (str [https://docs.python.org/2/library/functions.html#str]) – Optionally, only return queues that start with
this value.

	Return type:	list

	Returns:	A list of boto.sqs.queue.Queue instances.

	
get_queue(queue_name)

	Retrieves the queue with the given name, or None if no match
was found.

	Parameters:	queue_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the queue to retrieve.

	Return type:	boto.sqs.queue.Queue or None

	Returns:	The requested queue, or None if no match was found.

	
get_queue_attributes(queue, attribute='All')

	Gets one or all attributes of a Queue

	Parameters:	queue (A Queue object) – The SQS queue to be deleted

	Return type:	boto.sqs.attributes.Attributes

	Returns:	An Attributes object containing request value(s).

	
lookup(queue_name)

	Retrieves the queue with the given name, or None if no match
was found.

	Parameters:	queue_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the queue to retrieve.

	Return type:	boto.sqs.queue.Queue or None

	Returns:	The requested queue, or None if no match was found.

	
receive_message(queue, number_messages=1, visibility_timeout=None, attributes=None)

	Read messages from an SQS Queue.

	Parameters:	
	queue (A Queue object) – The Queue from which messages are read.

	number_messages (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of messages to read
(default=1)

	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The number of seconds the message should
remain invisible to other queue readers
(default=None which uses the Queues default)

	attributes (str [https://docs.python.org/2/library/functions.html#str]) – The name of additional attribute to return
with response or All if you want all attributes.
The default is to return no additional attributes.
Valid values:

All|SenderId|SentTimestamp|
ApproximateReceiveCount|
ApproximateFirstReceiveTimestamp

	Return type:	list

	Returns:	A list of boto.sqs.message.Message objects.

	
remove_permission(queue, label)

	Remove a permission from a queue.

	Parameters:	
	queue (boto.sqs.queue.Queue) – The queue object

	label (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The unique label associated with the permission
being removed.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
send_message(queue, message_content, delay_seconds=None)

	

	
send_message_batch(queue, messages)

	Delivers up to 10 messages to a queue in a single request.

	Parameters:	
	queue (A boto.sqs.queue.Queue object.) – The Queue to which the messages will be written.

	messages (List of lists.) – A list of lists or tuples. Each inner
tuple represents a single message to be written
and consists of and ID (string) that must be unique
within the list of messages, the message body itself
which can be a maximum of 64K in length, and an
integer which represents the delay time (in seconds)
for the message (0-900) before the message will
be delivered to the queue.

	
set_queue_attribute(queue, attribute, value)

	

boto.sqs.jsonmessage

	
class boto.sqs.jsonmessage.JSONMessage(queue=None, body=None, xml_attrs=None)

	Acts like a dictionary but encodes it’s data as a Base64 encoded JSON payload.

	
decode(value)

	

	
encode(value)

	

boto.sqs.message

SQS Message

A Message represents the data stored in an SQS queue. The rules for what is allowed within an SQS
Message are here:

http://docs.amazonwebservices.com/AWSSimpleQueueService/2008-01-01/SQSDeveloperGuide/Query_QuerySendMessage.html

So, at it’s simplest level a Message just needs to allow a developer to store bytes in it and get the bytes
back out. However, to allow messages to have richer semantics, the Message class must support the
following interfaces:

The constructor for the Message class must accept a keyword parameter “queue” which is an instance of a
boto Queue object and represents the queue that the message will be stored in. The default value for
this parameter is None.

The constructor for the Message class must accept a keyword parameter “body” which represents the
content or body of the message. The format of this parameter will depend on the behavior of the
particular Message subclass. For example, if the Message subclass provides dictionary-like behavior to the
user the body passed to the constructor should be a dict-like object that can be used to populate
the initial state of the message.

The Message class must provide an encode method that accepts a value of the same type as the body
parameter of the constructor and returns a string of characters that are able to be stored in an
SQS message body (see rules above).

The Message class must provide a decode method that accepts a string of characters that can be
stored (and probably were stored!) in an SQS message and return an object of a type that is consistent
with the “body” parameter accepted on the class constructor.

The Message class must provide a __len__ method that will return the size of the encoded message
that would be stored in SQS based on the current state of the Message object.

The Message class must provide a get_body method that will return the body of the message in the
same format accepted in the constructor of the class.

The Message class must provide a set_body method that accepts a message body in the same format
accepted by the constructor of the class. This method should alter to the internal state of the
Message object to reflect the state represented in the message body parameter.

The Message class must provide a get_body_encoded method that returns the current body of the message
in the format in which it would be stored in SQS.

	
class boto.sqs.message.EncodedMHMessage(queue=None, body=None, xml_attrs=None)

	The EncodedMHMessage class provides a message that provides RFC821-like
headers like this:

HeaderName: HeaderValue

This variation encodes/decodes the body of the message in base64 automatically.
The message instance can be treated like a mapping object,
i.e. m[‘HeaderName’] would return ‘HeaderValue’.

	
decode(value)

	

	
encode(value)

	

	
class boto.sqs.message.MHMessage(queue=None, body=None, xml_attrs=None)

	The MHMessage class provides a message that provides RFC821-like
headers like this:

HeaderName: HeaderValue

The encoding/decoding of this is handled automatically and after
the message body has been read, the message instance can be treated
like a mapping object, i.e. m[‘HeaderName’] would return ‘HeaderValue’.

	
decode(value)

	

	
encode(value)

	

	
get(key, default=None)

	

	
has_key(key)

	

	
items()

	

	
keys()

	

	
update(d)

	

	
values()

	

	
class boto.sqs.message.Message(queue=None, body='')

	The default Message class used for SQS queues. This class automatically
encodes/decodes the message body using Base64 encoding to avoid any
illegal characters in the message body. See:

http://developer.amazonwebservices.com/connect/thread.jspa?messageID=49680%EC%88%90

for details on why this is a good idea. The encode/decode is meant to
be transparent to the end-user.

	
decode(value)

	

	
encode(value)

	

	
class boto.sqs.message.RawMessage(queue=None, body='')

	Base class for SQS messages. RawMessage does not encode the message
in any way. Whatever you store in the body of the message is what
will be written to SQS and whatever is returned from SQS is stored
directly into the body of the message.

	
change_visibility(visibility_timeout)

	

	
decode(value)

	Transform seralized byte array into any object.

	
delete()

	

	
encode(value)

	Transform body object into serialized byte array format.

	
endElement(name, value, connection)

	

	
get_body()

	

	
get_body_encoded()

	This method is really a semi-private method used by the Queue.write
method when writing the contents of the message to SQS.
You probably shouldn’t need to call this method in the normal course of events.

	
set_body(body)

	Override the current body for this object, using decoded format.

	
startElement(name, attrs, connection)

	

boto.sqs.queue

Represents an SQS Queue

	
class boto.sqs.queue.Queue(connection=None, url=None, message_class=<class boto.sqs.message.Message>)

	
	
add_permission(label, aws_account_id, action_name)

	Add a permission to a queue.

	Parameters:	
	label (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – A unique identification of the permission you are setting.
Maximum of 80 characters [0-9a-zA-Z_-]
Example, AliceSendMessage

	principal_id – The AWS account number of the principal who will be given
permission. The principal must have an AWS account, but
does not need to be signed up for Amazon SQS. For information
about locating the AWS account identification.

	action_name (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The action. Valid choices are:
*|SendMessage|ReceiveMessage|DeleteMessage|
ChangeMessageVisibility|GetQueueAttributes

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
clear(page_size=10, vtimeout=10)

	Utility function to remove all messages from a queue

	
count(page_size=10, vtimeout=10)

	Utility function to count the number of messages in a queue.
Note: This function now calls GetQueueAttributes to obtain
an ‘approximate’ count of the number of messages in a queue.

	
count_slow(page_size=10, vtimeout=10)

	Deprecated. This is the old ‘count’ method that actually counts
the messages by reading them all. This gives an accurate count but
is very slow for queues with non-trivial number of messasges.
Instead, use get_attribute(‘ApproximateNumberOfMessages’) to take
advantage of the new SQS capability. This is retained only for
the unit tests.

	
delete()

	Delete the queue.

	
delete_message(message)

	Delete a message from the queue.

	Parameters:	message (boto.sqs.message.Message) – The boto.sqs.message.Message object to delete.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise

	
dump(file_name, page_size=10, vtimeout=10, sep='\n')

	Utility function to dump the messages in a queue to a file
NOTE: Page size must be < 10 else SQS errors

	
endElement(name, value, connection)

	

	
get_attributes(attributes='All')

	Retrieves attributes about this queue object and returns
them in an Attribute instance (subclass of a Dictionary).

	Parameters:	attributes (string [https://docs.python.org/2/library/string.html#module-string]) – String containing one of:
ApproximateNumberOfMessages,
ApproximateNumberOfMessagesNotVisible,
VisibilityTimeout,
CreatedTimestamp,
LastModifiedTimestamp,
Policy

	Return type:	Attribute object

	Returns:	An Attribute object which is a mapping type holding the
requested name/value pairs

	
get_messages(num_messages=1, visibility_timeout=None, attributes=None)

	Get a variable number of messages.

	Parameters:	
	num_messages (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of messages to read from the queue.

	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The VisibilityTimeout for the messages read.

	attributes (str [https://docs.python.org/2/library/functions.html#str]) – The name of additional attribute to return with response
or All if you want all attributes. The default is to
return no additional attributes. Valid values:
All
SenderId
SentTimestamp
ApproximateReceiveCount
ApproximateFirstReceiveTimestamp

	Return type:	list

	Returns:	A list of boto.sqs.message.Message objects.

	
get_timeout()

	Get the visibility timeout for the queue.

	Return type:	int [https://docs.python.org/2/library/functions.html#int]

	Returns:	The number of seconds as an integer.

	
id

	

	
load(file_name, sep='\n')

	Utility function to load messages from a local filename to a queue

	
load_from_file(fp, sep='\n')

	Utility function to load messages from a file-like object to a queue

	
load_from_filename(file_name, sep='\n')

	Utility function to load messages from a local filename to a queue

	
load_from_s3(bucket, prefix=None)

	Load messages previously saved to S3.

	
name

	

	
new_message(body='')

	Create new message of appropriate class.

	Parameters:	body (message body) – The body of the newly created message (optional).

	Return type:	boto.sqs.message.Message

	Returns:	A new Message object

	
read(visibility_timeout=None)

	Read a single message from the queue.

	Parameters:	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The timeout for this message in seconds

	Return type:	boto.sqs.message.Message

	Returns:	A single message or None if queue is empty

	
remove_permission(label)

	Remove a permission from a queue.

	Parameters:	label (str [https://docs.python.org/2/library/functions.html#str] or unicode [https://docs.python.org/2/library/functions.html#unicode]) – The unique label associated with the permission being removed.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, False otherwise.

	
save(file_name, sep='\n')

	Read all messages from the queue and persist them to local file.
Messages are written to the file and the ‘sep’ string is written
in between messages. Messages are deleted from the queue after
being written to the file.
Returns the number of messages saved.

	
save_to_file(fp, sep='\n')

	Read all messages from the queue and persist them to file-like object.
Messages are written to the file and the ‘sep’ string is written
in between messages. Messages are deleted from the queue after
being written to the file.
Returns the number of messages saved.

	
save_to_filename(file_name, sep='\n')

	Read all messages from the queue and persist them to local file.
Messages are written to the file and the ‘sep’ string is written
in between messages. Messages are deleted from the queue after
being written to the file.
Returns the number of messages saved.

	
save_to_s3(bucket)

	Read all messages from the queue and persist them to S3.
Messages are stored in the S3 bucket using a naming scheme of:

<queue_id>/<message_id>

Messages are deleted from the queue after being saved to S3.
Returns the number of messages saved.

	
set_attribute(attribute, value)

	Set a new value for an attribute of the Queue.

	Parameters:	
	attribute (String) – The name of the attribute you want to set. The
only valid value at this time is: VisibilityTimeout

	value (int [https://docs.python.org/2/library/functions.html#int]) – The new value for the attribute.
For VisibilityTimeout the value must be an
integer number of seconds from 0 to 86400.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful, otherwise False.

	
set_message_class(message_class)

	Set the message class that should be used when instantiating messages read
from the queue. By default, the class boto.sqs.message.Message is used but
this can be overriden with any class that behaves like a message.

	Parameters:	message_class (Message-like class) – The new Message class

	
set_timeout(visibility_timeout)

	Set the visibility timeout for the queue.

	Parameters:	visibility_timeout (int [https://docs.python.org/2/library/functions.html#int]) – The desired timeout in seconds

	
startElement(name, attrs, connection)

	

	
write(message, delay_seconds=None)

	Add a single message to the queue.

	Parameters:	message (Message) – The message to be written to the queue

	Return type:	boto.sqs.message.Message

	Returns:	The boto.sqs.message.Message object that was written.

boto.sqs.regioninfo

	
class boto.sqs.regioninfo.SQSRegionInfo(connection=None, name=None, endpoint=None)

	

boto.sqs.batchresults

A set of results returned by SendMessageBatch.

	
class boto.sqs.batchresults.BatchResults(parent)

	A container for the results of a send_message_batch request.

	Variables:	
	results – A list of successful results. Each item in the
list will be an instance of ResultEntry.

	errors – A list of unsuccessful results. Each item in the
list will be an instance of ResultEntry.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.sqs.batchresults.ResultEntry

	The result (successful or unsuccessful) of a single
message within a send_message_batch request.

In the case of a successful result, this dict-like
object will contain the following items:

	Variables:	
	id – A string containing the user-supplied ID of the message.

	message_id – A string containing the SQS ID of the new message.

	message_md5 – A string containing the MD5 hash of the message body.

In the case of an error, this object will contain the following
items:

	Variables:	
	id – A string containing the user-supplied ID of the message.

	sender_fault – A boolean value.

	error_code – A string containing a short description of the error.

	error_message – A string containing a description of the error.

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

STS

boto.sts

	
boto.sts.connect_to_region(region_name, **kw_params)

	Given a valid region name, return a
boto.sts.connection.STSConnection.

	Type:	str

	Parameters:	region_name – The name of the region to connect to.

	Return type:	boto.sts.connection.STSConnection or None

	Returns:	A connection to the given region, or None if an invalid region
name is given

	
boto.sts.get_region(region_name, **kw_params)

	Find and return a boto.regioninfo.RegionInfo object
given a region name.

	Type:	str

	Param:	The name of the region.

	Return type:	boto.regioninfo.RegionInfo

	Returns:	The RegionInfo object for the given region or None if
an invalid region name is provided.

	
boto.sts.regions()

	Get all available regions for the STS service.

	Return type:	list

	Returns:	A list of boto.regioninfo.RegionInfo instances

	
class boto.sts.STSConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', converter=None)

	
	
APIVersion = '2011-06-15'

	

	
DefaultRegionEndpoint = 'sts.amazonaws.com'

	

	
DefaultRegionName = 'us-east-1'

	

	
get_federation_token(name, duration=None, policy=None)

	

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the Federated user associated with
the credentials.

	duration (int [https://docs.python.org/2/library/functions.html#int]) – The number of seconds the credentials should
remain valid.

	policy (str [https://docs.python.org/2/library/functions.html#str]) – A JSON policy to associate with these credentials.

	
get_session_token(duration=None, force_new=False)

	Return a valid session token. Because retrieving new tokens
from the Secure Token Service is a fairly heavyweight operation
this module caches previously retrieved tokens and returns
them when appropriate. Each token is cached with a key
consisting of the region name of the STS endpoint
concatenated with the requesting user’s access id. If there
is a token in the cache meeting with this key, the session
expiration is checked to make sure it is still valid and if
so, the cached token is returned. Otherwise, a new session
token is requested from STS and it is placed into the cache
and returned.

	Parameters:	
	duration (int [https://docs.python.org/2/library/functions.html#int]) – The number of seconds the credentials should
remain valid.

	force_new (bool [https://docs.python.org/2/library/functions.html#bool]) – If this parameter is True, a new session token
will be retrieved from the Secure Token Service regardless
of whether there is a valid cached token or not.

boto.sts.credentials

	
class boto.sts.credentials.Credentials(parent=None)

	

	Variables:	
	access_key – The AccessKeyID.

	secret_key – The SecretAccessKey.

	session_token – The session token that must be passed with
requests to use the temporary credentials

	expiration – The timestamp for when the credentials will expire

	
endElement(name, value, connection)

	

	
classmethod from_json(json_doc)

	Create and return a new Session Token based on the contents
of a JSON document.

	Parameters:	json_doc (str [https://docs.python.org/2/library/functions.html#str]) – A string containing a JSON document with a
previously saved Credentials object.

	
is_expired(time_offset_seconds=0)

	Checks to see if the Session Token is expired or not. By default
it will check to see if the Session Token is expired as of the
moment the method is called. However, you can supply an
optional parameter which is the number of seconds of offset
into the future for the check. For example, if you supply
a value of 5, this method will return a True if the Session
Token will be expired 5 seconds from this moment.

	Parameters:	time_offset_seconds (int [https://docs.python.org/2/library/functions.html#int]) – The number of seconds into the future
to test the Session Token for expiration.

	
classmethod load(file_path)

	Create and return a new Session Token based on the contents
of a previously saved JSON-format file.

	Parameters:	file_path (str [https://docs.python.org/2/library/functions.html#str]) – The fully qualified path to the JSON-format
file containing the previously saved Session Token information.

	
save(file_path)

	Persist a Session Token to a file in JSON format.

	Parameters:	path (str [https://docs.python.org/2/library/functions.html#str]) – The fully qualified path to the file where the
the Session Token data should be written. Any previous
data in the file will be overwritten. To help protect
the credentials contained in the file, the permissions
of the file will be set to readable/writable by owner only.

	
startElement(name, attrs, connection)

	

	
to_dict()

	Return a Python dict containing the important information
about this Session Token.

	
class boto.sts.credentials.FederationToken(parent=None)

	

	Variables:	
	credentials – A Credentials object containing the credentials.

	federated_user_arn – ARN specifying federated user using credentials.

	federated_user_id – The ID of the federated user using credentials.

	packed_policy_size – A percentage value indicating the size of
the policy in packed form

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

VPC

boto.vpc

Represents a connection to the EC2 service.

	
class boto.vpc.VPCConnection(aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, host=None, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, debug=0, https_connection_factory=None, region=None, path='/', api_version=None, security_token=None)

	Init method to create a new connection to EC2.

	
associate_dhcp_options(dhcp_options_id, vpc_id)

	Associate a set of Dhcp Options with a VPC.

	Parameters:	
	dhcp_options_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the Dhcp Options

	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
associate_route_table(route_table_id, subnet_id)

	Associates a route table with a specific subnet.

	Parameters:	
	route_table_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the route table to associate.

	subnet_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the subnet to associate with.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Returns:	The ID of the association created

	
attach_internet_gateway(internet_gateway_id, vpc_id)

	Attach an internet gateway to a specific VPC.

	Parameters:	
	internet_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the internet gateway to delete.

	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC to attach to.

	Return type:	Bool

	Returns:	True if successful

	
attach_vpn_gateway(vpn_gateway_id, vpc_id)

	Attaches a VPN gateway to a VPC.

	Parameters:	
	vpn_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the vpn_gateway to attach

	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC you want to attach the gateway to.

	Return type:	An attachment

	Returns:	a boto.vpc.vpngateway.Attachment

	
create_customer_gateway(type, ip_address, bgp_asn)

	Create a new Customer Gateway

	Parameters:	
	type (str [https://docs.python.org/2/library/functions.html#str]) – Type of VPN Connection. Only valid valid currently is ‘ipsec.1’

	ip_address (str [https://docs.python.org/2/library/functions.html#str]) – Internet-routable IP address for customer’s gateway.
Must be a static address.

	bgp_asn (str [https://docs.python.org/2/library/functions.html#str]) – Customer gateway’s Border Gateway Protocol (BGP)
Autonomous System Number (ASN)

	Return type:	The newly created CustomerGateway

	Returns:	A boto.vpc.customergateway.CustomerGateway object

	
create_dhcp_options(vpc_id, cidr_block, availability_zone=None)

	Create a new DhcpOption

	Parameters:	
	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC where you want to create the subnet.

	cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – The CIDR block you want the subnet to cover.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – The AZ you want the subnet in

	Return type:	The newly created DhcpOption

	Returns:	A boto.vpc.customergateway.DhcpOption object

	
create_internet_gateway()

	Creates an internet gateway for VPC.

	Return type:	Newly created internet gateway.

	Returns:	boto.vpc.internetgateway.InternetGateway

	
create_route(route_table_id, destination_cidr_block, gateway_id=None, instance_id=None)

	Creates a new route in the route table within a VPC. The route’s target
can be either a gateway attached to the VPC or a NAT instance in the
VPC.

	Parameters:	
	route_table_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the route table for the route.

	destination_cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – The CIDR address block used for the
destination match.

	gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the gateway attached to your VPC.

	instance_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of a NAT instance in your VPC.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
create_route_table(vpc_id)

	Creates a new route table.

	Parameters:	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The VPC ID to associate this route table with.

	Return type:	The newly created route table

	Returns:	A boto.vpc.routetable.RouteTable object

	
create_subnet(vpc_id, cidr_block, availability_zone=None)

	Create a new Subnet

	Parameters:	
	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC where you want to create the subnet.

	cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – The CIDR block you want the subnet to cover.

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – The AZ you want the subnet in

	Return type:	The newly created Subnet

	Returns:	A boto.vpc.customergateway.Subnet object

	
create_vpc(cidr_block)

	Create a new Virtual Private Cloud.

	Parameters:	cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – A valid CIDR block

	Return type:	The newly created VPC

	Returns:	A boto.vpc.vpc.VPC object

	
create_vpn_connection(type, customer_gateway_id, vpn_gateway_id)

	Create a new VPN Connection.

	Parameters:	
	type (str [https://docs.python.org/2/library/functions.html#str]) – The type of VPN Connection. Currently only ‘ipsec.1’
is supported

	customer_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the customer gateway.

	vpn_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPN gateway.

	Return type:	The newly created VpnConnection

	Returns:	A boto.vpc.vpnconnection.VpnConnection object

	
create_vpn_gateway(type, availability_zone=None)

	Create a new Vpn Gateway

	Parameters:	
	type (str [https://docs.python.org/2/library/functions.html#str]) – Type of VPN Connection. Only valid valid currently is ‘ipsec.1’

	availability_zone (str [https://docs.python.org/2/library/functions.html#str]) – The Availability Zone where you want the VPN gateway.

	Return type:	The newly created VpnGateway

	Returns:	A boto.vpc.vpngateway.VpnGateway object

	
delete_customer_gateway(customer_gateway_id)

	Delete a Customer Gateway.

	Parameters:	customer_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the customer_gateway to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_dhcp_options(dhcp_options_id)

	Delete a DHCP Options

	Parameters:	dhcp_options_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the DHCP Options to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_internet_gateway(internet_gateway_id)

	Deletes an internet gateway from the VPC.

	Parameters:	internet_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the internet gateway to delete.

	Return type:	Bool

	Returns:	True if successful

	
delete_route(route_table_id, destination_cidr_block)

	Deletes a route from a route table within a VPC.

	Parameters:	
	route_table_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the route table with the route.

	destination_cidr_block (str [https://docs.python.org/2/library/functions.html#str]) – The CIDR address block used for
destination match.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_route_table(route_table_id)

	Delete a route table.

	Parameters:	route_table_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the route table to delete.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_subnet(subnet_id)

	Delete a subnet.

	Parameters:	subnet_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the subnet to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_vpc(vpc_id)

	Delete a Virtual Private Cloud.

	Parameters:	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the vpc to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_vpn_connection(vpn_connection_id)

	Delete a VPN Connection.

	Parameters:	vpn_connection_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the vpn_connection to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
delete_vpn_gateway(vpn_gateway_id)

	Delete a Vpn Gateway.

	Parameters:	vpn_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the vpn_gateway to be deleted.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
detach_internet_gateway(internet_gateway_id, vpc_id)

	Detach an internet gateway from a specific VPC.

	Parameters:	
	internet_gateway_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the internet gateway to delete.

	vpc_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the VPC to attach to.

	Return type:	Bool

	Returns:	True if successful

	
disassociate_route_table(association_id)

	Removes an association from a route table. This will cause all subnets
that would’ve used this association to now use the main routing
association instead.

	Parameters:	association_id (str [https://docs.python.org/2/library/functions.html#str]) – The ID of the association to disassociate.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if successful

	
get_all_customer_gateways(customer_gateway_ids=None, filters=None)

	Retrieve information about your CustomerGateways. You can filter results to
return information only about those CustomerGateways that match your search
parameters. Otherwise, all CustomerGateways associated with your account
are returned.

	Parameters:	
	customer_gateway_ids (list) – A list of strings with the desired CustomerGateway ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the CustomerGateway
(pending,available,deleting,deleted)

	type, the type of customer gateway (ipsec.1)

	ipAddress the IP address of customer gateway’s
internet-routable external inteface

	Return type:	list

	Returns:	A list of boto.vpc.customergateway.CustomerGateway

	
get_all_dhcp_options(dhcp_options_ids=None)

	Retrieve information about your DhcpOptions.

	Parameters:	dhcp_options_ids (list) – A list of strings with the desired DhcpOption ID’s

	Return type:	list

	Returns:	A list of boto.vpc.dhcpoptions.DhcpOptions

	
get_all_internet_gateways(internet_gateway_ids=None, filters=None)

	Get a list of internet gateways. You can filter results to return information
about only those gateways that you’re interested in.

	Parameters:	
	internet_gateway_ids (list) – A list of strings with the desired gateway IDs.

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.

	
get_all_route_tables(route_table_ids=None, filters=None)

	Retrieve information about your routing tables. You can filter results
to return information only about those route tables that match your
search parameters. Otherwise, all route tables associated with your
account are returned.

	Parameters:	
	route_table_ids (list) – A list of strings with the desired route table
IDs.

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.

	Return type:	list

	Returns:	A list of boto.vpc.routetable.RouteTable

	
get_all_subnets(subnet_ids=None, filters=None)

	Retrieve information about your Subnets. You can filter results to
return information only about those Subnets that match your search
parameters. Otherwise, all Subnets associated with your account
are returned.

	Parameters:	
	subnet_ids (list) – A list of strings with the desired Subnet ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the Subnet
(pending,available)

	vpdId, the ID of teh VPC the subnet is in.

	cidrBlock, CIDR block of the subnet

	availabilityZone, the Availability Zone
the subnet is in.

	Return type:	list

	Returns:	A list of boto.vpc.subnet.Subnet

	
get_all_vpcs(vpc_ids=None, filters=None)

	Retrieve information about your VPCs. You can filter results to
return information only about those VPCs that match your search
parameters. Otherwise, all VPCs associated with your account
are returned.

	Parameters:	
	vpc_ids (list) – A list of strings with the desired VPC ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the VPC (pending or available)

	cidrBlock, CIDR block of the VPC

	dhcpOptionsId, the ID of a set of DHCP options

	Return type:	list

	Returns:	A list of boto.vpc.vpc.VPC

	
get_all_vpn_connections(vpn_connection_ids=None, filters=None)

	Retrieve information about your VPN_CONNECTIONs. You can filter results to
return information only about those VPN_CONNECTIONs that match your search
parameters. Otherwise, all VPN_CONNECTIONs associated with your account
are returned.

	Parameters:	
	vpn_connection_ids (list) – A list of strings with the desired VPN_CONNECTION ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the VPN_CONNECTION
pending,available,deleting,deleted

	type, the type of connection, currently ‘ipsec.1’

	customerGatewayId, the ID of the customer gateway
associated with the VPN

	vpnGatewayId, the ID of the VPN gateway associated
with the VPN connection

	Return type:	list

	Returns:	A list of boto.vpn_connection.vpnconnection.VpnConnection

	
get_all_vpn_gateways(vpn_gateway_ids=None, filters=None)

	Retrieve information about your VpnGateways. You can filter results to
return information only about those VpnGateways that match your search
parameters. Otherwise, all VpnGateways associated with your account
are returned.

	Parameters:	
	vpn_gateway_ids (list) – A list of strings with the desired VpnGateway ID’s

	filters (list of tuples) – A list of tuples containing filters. Each tuple
consists of a filter key and a filter value.
Possible filter keys are:

	state, the state of the VpnGateway
(pending,available,deleting,deleted)

	type, the type of customer gateway (ipsec.1)

	availabilityZone, the Availability zone the
VPN gateway is in.

	Return type:	list

	Returns:	A list of boto.vpc.customergateway.VpnGateway

boto.vpc.customergateway

Represents a Customer Gateway

	
class boto.vpc.customergateway.CustomerGateway(connection=None)

	
	
endElement(name, value, connection)

	

boto.vpc.dhcpoptions

Represents a DHCP Options set

	
class boto.vpc.dhcpoptions.DhcpConfigSet

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.vpc.dhcpoptions.DhcpOptions(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.vpc.dhcpoptions.DhcpValueSet

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

boto.vpc.subnet

Represents a Subnet

	
class boto.vpc.subnet.Subnet(connection=None)

	
	
endElement(name, value, connection)

	

boto.vpc.vpc

Represents a Virtual Private Cloud.

	
class boto.vpc.vpc.VPC(connection=None)

	
	
delete()

	

	
endElement(name, value, connection)

	

boto.vpc.vpnconnection

Represents a VPN Connectionn

	
class boto.vpc.vpnconnection.VpnConnection(connection=None)

	
	
delete()

	

	
endElement(name, value, connection)

	

boto.vpc.vpngateway

Represents a Vpn Gateway

	
class boto.vpc.vpngateway.Attachment(connection=None)

	
	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

	
class boto.vpc.vpngateway.VpnGateway(connection=None)

	
	
attach(vpc_id)

	

	
endElement(name, value, connection)

	

	
startElement(name, attrs, connection)

	

About the Documentation

boto’s documentation uses the Sphinx [http://sphinx.pocoo.org/] documentation system, which in turn is
based on docutils [http://docutils.sf.net/]. The basic idea is that lightly-formatted plain-text
documentation is transformed into HTML, PDF, and any other output format.

To actually build the documentation locally, you’ll currently need to install
Sphinx – easy_install Sphinx should do the trick.

Then, building the html is easy; just make html from the docs directory.

To get started contributing, you’ll want to read the ReStructuredText
Primer [http://sphinx.pocoo.org/rest.html]. After that, you’ll want to read about the Sphinx-specific markup [http://sphinx.pocoo.org/markup/]
that’s used to manage metadata, indexing, and cross-references.

The main thing to keep in mind as you write and edit docs is that the more
semantic markup you can add the better. So:

Import ``boto`` to your script...

Isn’t nearly as helpful as:

Add :mod:`boto` to your script...

This is because Sphinx will generate a proper link for the latter, which greatly
helps readers. There’s basically no limit to the amount of useful markup you can
add.

The fabfile

There is a Fabric [http://fabfile.org] file that can be used to build and deploy the documentation
to a webserver that you ssh access to.

To build and deploy:

cd docs/
fab deploy:remote_path='/var/www/folder/whatever' --hosts=user@host

This will get the latest code from subversion, add the revision number to the
docs conf.py file, call make html to build the documentation, then it will
tarball it up and scp up to the host you specified and untarball it in the
folder you specified creating a symbolic link from the untarballed versioned
folder to {remote_path}/boto-docs.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 boto	

 	
 	
 boto.cloudformation	

 	
 	
 boto.cloudformation.stack	

 	
 	
 boto.cloudformation.template	

 	
 	
 boto.cloudfront	

 	
 	
 boto.cloudfront.distribution	

 	
 	
 boto.cloudfront.exception	

 	
 	
 boto.cloudfront.origin	

 	
 	
 boto.connection	

 	
 	
 boto.contrib	

 	
 	
 boto.contrib.ymlmessage	

 	
 	
 boto.dynamodb	

 	
 	
 boto.dynamodb.batch	

 	
 	
 boto.dynamodb.item	

 	
 	
 boto.dynamodb.layer1	

 	
 	
 boto.dynamodb.layer2	

 	
 	
 boto.dynamodb.schema	

 	
 	
 boto.dynamodb.table	

 	
 	
 boto.ec2	

 	
 	
 boto.ec2.address	

 	
 	
 boto.ec2.autoscale	

 	
 	
 boto.ec2.autoscale.activity	

 	
 	
 boto.ec2.autoscale.group	

 	
 	
 boto.ec2.autoscale.instance	

 	
 	
 boto.ec2.autoscale.launchconfig	

 	
 	
 boto.ec2.autoscale.policy	

 	
 	
 boto.ec2.autoscale.request	

 	
 	
 boto.ec2.autoscale.scheduled	

 	
 	
 boto.ec2.buyreservation	

 	
 	
 boto.ec2.cloudwatch	

 	
 	
 boto.ec2.cloudwatch.datapoint	

 	
 	
 boto.ec2.cloudwatch.metric	

 	
 	
 boto.ec2.connection	

 	
 	
 boto.ec2.ec2object	

 	
 	
 boto.ec2.elb	

 	
 	
 boto.ec2.elb.healthcheck	

 	
 	
 boto.ec2.elb.instancestate	

 	
 	
 boto.ec2.elb.listelement	

 	
 	
 boto.ec2.elb.listener	

 	
 	
 boto.ec2.elb.loadbalancer	

 	
 	
 boto.ec2.image	

 	
 	
 boto.ec2.instance	

 	
 	
 boto.ec2.instanceinfo	

 	
 	
 boto.ec2.instancestatus	

 	
 	
 boto.ec2.keypair	

 	
 	
 boto.ec2.regioninfo	

 	
 	
 boto.ec2.reservedinstance	

 	
 	
 boto.ec2.securitygroup	

 	
 	
 boto.ec2.snapshot	

 	
 	
 boto.ec2.volume	

 	
 	
 boto.ec2.zone	

 	
 	
 boto.ecs	

 	
 	
 boto.ecs.item	

 	
 	
 boto.emr	

 	
 	
 boto.emr.connection	

 	
 	
 boto.emr.emrobject	

 	
 	
 boto.emr.step	

 	
 	
 boto.exception	

 	
 	
 boto.file.bucket	

 	
 	
 boto.file.connection	

 	
 	
 boto.file.key	

 	
 	
 boto.file.simpleresultset	

 	
 	
 boto.fps	

 	
 	
 boto.fps.connection	

 	
 	
 boto.gs.acl	

 	
 	
 boto.gs.bucket	

 	
 	
 boto.gs.connection	

 	
 	
 boto.gs.key	

 	
 	
 boto.gs.resumable_upload_handler	

 	
 	
 boto.gs.user	

 	
 	
 boto.handler	

 	
 	
 boto.iam	

 	
 	
 boto.iam.connection	

 	
 	
 boto.iam.summarymap	

 	
 	
 boto.manage	

 	
 	
 boto.manage.propget	

 	
 	
 boto.manage.server	

 	
 	
 boto.manage.task	

 	
 	
 boto.manage.volume	

 	
 	
 boto.mturk	

 	
 	
 boto.mturk.connection	

 	
 	
 boto.mturk.notification	

 	
 	
 boto.mturk.price	

 	
 	
 boto.mturk.qualification	

 	
 	
 boto.mturk.question	

 	
 	
 boto.pyami	

 	
 	
 boto.pyami.bootstrap	

 	
 	
 boto.pyami.config	

 	
 	
 boto.pyami.copybot	

 	
 	
 boto.pyami.installers	

 	
 	
 boto.pyami.installers.ubuntu	

 	
 	
 boto.pyami.installers.ubuntu.apache	

 	
 	
 boto.pyami.installers.ubuntu.ebs	

 	
 	
 boto.pyami.installers.ubuntu.installer	

 	
 	
 boto.pyami.installers.ubuntu.mysql	

 	
 	
 boto.pyami.installers.ubuntu.trac	

 	
 	
 boto.pyami.launch_ami	

 	
 	
 boto.pyami.scriptbase	

 	
 	
 boto.pyami.startup	

 	
 	
 boto.rds	

 	
 	
 boto.rds.dbinstance	

 	
 	
 boto.rds.dbsecuritygroup	

 	
 	
 boto.rds.dbsnapshot	

 	
 	
 boto.rds.event	

 	
 	
 boto.rds.parametergroup	

 	
 	
 boto.resultset	

 	
 	
 boto.route53.connection	

 	
 	
 boto.route53.exception	

 	
 	
 boto.route53.hostedzone	

 	
 	
 boto.s3.acl	

 	
 	
 boto.s3.bucket	

 	
 	
 boto.s3.bucketlistresultset	

 	
 	
 boto.s3.connection	

 	
 	
 boto.s3.deletemarker	

 	
 	
 boto.s3.key	

 	
 	
 boto.s3.multipart	

 	
 	
 boto.s3.prefix	

 	
 	
 boto.s3.resumable_download_handler	

 	
 	
 boto.s3.user	

 	
 	
 boto.sdb	

 	
 	
 boto.sdb.connection	

 	
 	
 boto.sdb.db	

 	
 	
 boto.sdb.db.blob	

 	
 	
 boto.sdb.db.key	

 	
 	
 boto.sdb.db.manager	

 	
 	
 boto.sdb.db.manager.sdbmanager	

 	
 	
 boto.sdb.db.manager.xmlmanager	

 	
 	
 boto.sdb.db.model	

 	
 	
 boto.sdb.db.property	

 	
 	
 boto.sdb.db.query	

 	
 	
 boto.sdb.domain	

 	
 	
 boto.sdb.item	

 	
 	
 boto.sdb.queryresultset	

 	
 	
 boto.services	

 	
 	
 boto.services.bs	

 	
 	
 boto.services.message	

 	
 	
 boto.services.result	

 	
 	
 boto.services.service	

 	
 	
 boto.services.servicedef	

 	
 	
 boto.services.sonofmmm	

 	
 	
 boto.services.submit	

 	
 	
 boto.ses	

 	
 	
 boto.ses.connection	

 	
 	
 boto.sns	

 	
 	
 boto.sqs	

 	
 	
 boto.sqs.attributes	

 	
 	
 boto.sqs.batchresults	

 	
 	
 boto.sqs.connection	

 	
 	
 boto.sqs.jsonmessage	

 	
 	
 boto.sqs.message	

 	
 	
 boto.sqs.queue	

 	
 	
 boto.sqs.regioninfo	

 	
 	
 boto.sts	

 	
 	
 boto.sts.credentials	

 	
 	
 boto.utils	

 	
 	
 boto.vpc	

 	
 	
 boto.vpc.customergateway	

 	
 	
 boto.vpc.dhcpoptions	

 	
 	
 boto.vpc.subnet	

 	
 	
 boto.vpc.vpc	

 	
 	
 boto.vpc.vpnconnection	

 	
 	
 boto.vpc.vpngateway	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	ABORT (boto.exception.ResumableTransferDisposition attribute)

 	ABORT_CUR_PROCESS (boto.exception.ResumableTransferDisposition attribute)

 	ACCEPTED_STYLES (boto.mturk.question.SelectionAnswer attribute)

 	access_key (boto.connection.AWSAuthConnection attribute)

 	acl (boto.gs.acl.ACL attribute)

 	ACL (class in boto.gs.acl)

 	(class in boto.s3.acl)

 	Activity (class in boto.ec2.autoscale.activity)

 	add() (boto.mturk.qualification.Qualifications method)

 	add_attribute() (boto.dynamodb.item.Item method)

 	add_batch() (boto.dynamodb.batch.BatchList method)

 	add_credentials() (boto.manage.server.Server class method)

 	add_cron() (boto.pyami.installers.Installer method)

 	(boto.pyami.installers.ubuntu.installer.Installer method)

 	add_email_grant() (boto.gs.acl.ACL method)

 	(boto.gs.bucket.Bucket method)

 	(boto.gs.key.Key method)

 	(boto.s3.acl.ACL method)

 	(boto.s3.bucket.Bucket method)

 	(boto.s3.key.Key method)

 	add_env() (boto.pyami.installers.Installer method)

 	(boto.pyami.installers.ubuntu.installer.Installer method)

 	add_grant() (boto.ec2.securitygroup.IPPermissions method)

 	(boto.s3.acl.ACL method)

 	add_group_email_grant() (boto.gs.acl.ACL method)

 	(boto.gs.bucket.Bucket method)

 	(boto.gs.key.Key method)

 	add_group_grant() (boto.gs.acl.ACL method)

 	(boto.gs.key.Key method)

 	add_init_script() (boto.pyami.installers.Installer method)

 	(boto.pyami.installers.ubuntu.installer.Installer method)

 	add_instance_groups() (boto.emr.connection.EmrConnection method)

 	add_jobflow_steps() (boto.emr.connection.EmrConnection method)

 	add_object() (boto.cloudfront.distribution.Distribution method)

 	add_param() (boto.rds.parametergroup.ParameterGroup method)

 	add_permission() (boto.sns.SNSConnection method)

 	(boto.sqs.connection.SQSConnection method)

 	(boto.sqs.queue.Queue method)

 	add_rule() (boto.ec2.securitygroup.SecurityGroup method)

 	add_tag() (boto.ec2.ec2object.TaggedEC2Object method)

 	add_user_grant() (boto.gs.acl.ACL method)

 	(boto.gs.bucket.Bucket method)

 	(boto.gs.key.Key method)

 	(boto.s3.acl.ACL method)

 	(boto.s3.bucket.Bucket method)

 	(boto.s3.key.Key method)

 	add_user_to_group() (boto.iam.connection.IAMConnection method)

 	add_value() (boto.sdb.item.Item method)

 	AddInstanceGroupsResponse (class in boto.emr.emrobject)

 	Address (class in boto.ec2.address)

 	AdjustmentType (class in boto.ec2.autoscale.policy)

 	AdultRequirement (class in boto.mturk.qualification)

 	Alarm (class in boto.ec2.autoscale.policy)

 	all() (boto.sdb.db.model.Model class method)

 	allocate_address() (boto.ec2.connection.EC2Connection method)

 	ALLOWED_SCOPE_TYPE_SUB_ELEMS (boto.gs.acl.Scope attribute)

 	ami_id (boto.manage.server.Server attribute)

 	AnswerSpecification (class in boto.mturk.question)

 	Apache (class in boto.pyami.installers.ubuntu.apache)

 	APIVersion (boto.connection.AWSQueryConnection attribute)

 	(boto.ec2.autoscale.AutoScaleConnection attribute)

 	(boto.ec2.cloudwatch.CloudWatchConnection attribute)

 	(boto.ec2.connection.EC2Connection attribute)

 	(boto.ec2.elb.ELBConnection attribute)

 	(boto.ecs.ECSConnection attribute)

 	(boto.emr.connection.EmrConnection attribute)

 	(boto.fps.connection.FPSConnection attribute)

 	(boto.iam.connection.IAMConnection attribute)

 	(boto.mturk.connection.MTurkConnection attribute)

 	(boto.rds.RDSConnection attribute)

 	(boto.sdb.connection.SDBConnection attribute)

 	(boto.ses.connection.SESConnection attribute)

 	(boto.sns.SNSConnection attribute)

 	(boto.sqs.connection.SQSConnection attribute)

 	(boto.sts.STSConnection attribute)

 	
 	APNortheast (boto.s3.connection.Location attribute)

 	app() (boto.sdb.db.key.Key method)

 	append_field() (boto.mturk.question.OrderedContent method)

 	Application (class in boto.mturk.question)

 	apply() (boto.rds.parametergroup.Parameter method)

 	apply_security_groups() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	apply_security_groups_to_lb() (boto.ec2.elb.ELBConnection method)

 	approve_assignment() (boto.mturk.connection.MTurkConnection method)

 	APSoutheast (boto.s3.connection.Location attribute)

 	archive() (boto.manage.volume.Volume method)

 	arg (boto.ec2.autoscale.policy.MetricCollectionTypes.BaseType attribute)

 	(boto.ec2.autoscale.policy.MetricCollectionTypes.Granularity attribute)

 	(boto.ec2.autoscale.policy.MetricCollectionTypes.Metric attribute)

 	Arg (class in boto.emr.emrobject)

 	args() (boto.emr.step.JarStep method)

 	(boto.emr.step.Step method)

 	(boto.emr.step.StreamingStep method)

 	assert_case_insensitive() (in module boto.s3.connection)

 	assign_qualification() (boto.mturk.connection.MTurkConnection method)

 	Assignment (class in boto.mturk.connection)

 	associate() (boto.ec2.address.Address method)

 	associate_address() (boto.ec2.connection.EC2Connection method)

 	associate_dhcp_options() (boto.vpc.VPCConnection method)

 	associate_route_table() (boto.vpc.VPCConnection method)

 	attach() (boto.ec2.volume.Volume method)

 	(boto.manage.volume.Volume method)

 	(boto.pyami.installers.ubuntu.ebs.EBSInstaller method)

 	(boto.vpc.vpngateway.VpnGateway method)

 	attach_internet_gateway() (boto.vpc.VPCConnection method)

 	attach_lb_to_subnets() (boto.ec2.elb.ELBConnection method)

 	attach_network_interface() (boto.ec2.connection.EC2Connection method)

 	attach_subnets() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	attach_volume() (boto.ec2.connection.EC2Connection method)

 	attach_vpn_gateway() (boto.vpc.VPCConnection method)

 	Attachment (class in boto.vpc.vpngateway)

 	attachment_state (boto.manage.volume.Volume attribute)

 	attachment_state() (boto.ec2.volume.Volume method)

 	AttachmentSet (class in boto.ec2.volume)

 	attribute_names (boto.mturk.question.LengthConstraint attribute)

 	(boto.mturk.question.NumericConstraint attribute)

 	(boto.mturk.question.RegExConstraint attribute)

 	Attributes (class in boto.sqs.attributes)

 	AttrName (boto.ec2.snapshot.Snapshot attribute)

 	authorize() (boto.connection.HTTPRequest method)

 	(boto.ec2.securitygroup.SecurityGroup method)

 	(boto.rds.dbsecuritygroup.DBSecurityGroup method)

 	authorize_dbsecurity_group() (boto.rds.RDSConnection method)

 	authorize_security_group() (boto.ec2.connection.EC2Connection method)

 	authorize_security_group_deprecated() (boto.ec2.connection.EC2Connection method)

 	authorize_security_group_egress() (boto.ec2.connection.EC2Connection method)

 	AuthSMTPHandler (class in boto.utils)

 	AutoScaleConnection (class in boto.ec2.autoscale)

 	AutoScalingGroup (class in boto.ec2.autoscale.group)

 	AutoScalingGroupMetric (class in boto.ec2.autoscale.group)

 	aws_access_key_id (boto.connection.AWSAuthConnection attribute)

 	aws_secret_access_key (boto.connection.AWSAuthConnection attribute)

 	AWSAuthConnection (class in boto.connection)

 	AWSConnectionError

 	AWSQueryConnection (class in boto.connection)

B

 	
 	BaseAutoResultElement (class in boto.mturk.connection)

 	Batch (class in boto.dynamodb.batch)

 	batch_delete_attributes() (boto.sdb.connection.SDBConnection method)

 	(boto.sdb.domain.Domain method)

 	batch_get_item() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	batch_put_attributes() (boto.sdb.connection.SDBConnection method)

 	(boto.sdb.domain.Domain method)

 	BatchList (class in boto.dynamodb.batch)

 	BatchResults (class in boto.sqs.batchresults)

 	Binary (class in boto.mturk.question)

 	Blob (class in boto.sdb.db.blob)

 	BlobProperty (class in boto.sdb.db.property)

 	block_worker() (boto.mturk.connection.MTurkConnection method)

 	BlockDeviceMapping (class in boto.ec2.autoscale.launchconfig)

 	BooleanProperty (class in boto.sdb.db.property)

 	BooleanResult (class in boto.resultset)

 	Bootstrap (class in boto.pyami.bootstrap)

 	BootstrapAction (class in boto.emr.emrobject)

 	boto (module)

 	boto.cloudformation (module)

 	boto.cloudformation.stack (module)

 	boto.cloudformation.template (module)

 	boto.cloudfront (module)

 	boto.cloudfront.distribution (module)

 	boto.cloudfront.exception (module)

 	boto.cloudfront.origin (module)

 	boto.connection (module)

 	boto.contrib (module)

 	boto.contrib.ymlmessage (module)

 	boto.dynamodb (module)

 	boto.dynamodb.batch (module)

 	boto.dynamodb.item (module)

 	boto.dynamodb.layer1 (module)

 	boto.dynamodb.layer2 (module)

 	boto.dynamodb.schema (module)

 	boto.dynamodb.table (module)

 	boto.ec2 (module)

 	boto.ec2.address (module)

 	boto.ec2.autoscale (module)

 	boto.ec2.autoscale.activity (module)

 	boto.ec2.autoscale.group (module)

 	boto.ec2.autoscale.instance (module)

 	boto.ec2.autoscale.launchconfig (module)

 	boto.ec2.autoscale.policy (module)

 	boto.ec2.autoscale.request (module)

 	boto.ec2.autoscale.scheduled (module)

 	boto.ec2.buyreservation (module)

 	boto.ec2.cloudwatch (module)

 	boto.ec2.cloudwatch.datapoint (module)

 	boto.ec2.cloudwatch.metric (module)

 	boto.ec2.connection (module)

 	boto.ec2.ec2object (module)

 	boto.ec2.elb (module)

 	boto.ec2.elb.healthcheck (module)

 	boto.ec2.elb.instancestate (module)

 	boto.ec2.elb.listelement (module)

 	boto.ec2.elb.listener (module)

 	boto.ec2.elb.loadbalancer (module)

 	boto.ec2.image (module)

 	boto.ec2.instance (module)

 	boto.ec2.instanceinfo (module)

 	boto.ec2.instancestatus (module)

 	boto.ec2.keypair (module)

 	boto.ec2.regioninfo (module)

 	boto.ec2.reservedinstance (module)

 	boto.ec2.securitygroup (module)

 	boto.ec2.snapshot (module)

 	boto.ec2.volume (module)

 	boto.ec2.zone (module)

 	boto.ecs (module)

 	boto.ecs.item (module)

 	boto.emr (module)

 	boto.emr.connection (module)

 	boto.emr.emrobject (module)

 	boto.emr.step (module)

 	boto.exception (module)

 	boto.file.bucket (module)

 	boto.file.connection (module)

 	boto.file.key (module)

 	boto.file.simpleresultset (module)

 	boto.fps (module)

 	boto.fps.connection (module)

 	boto.gs.acl (module)

 	boto.gs.bucket (module)

 	boto.gs.connection (module)

 	boto.gs.key (module)

 	boto.gs.resumable_upload_handler (module)

 	boto.gs.user (module)

 	boto.handler (module)

 	boto.iam (module)

 	boto.iam.connection (module)

 	boto.iam.summarymap (module)

 	boto.manage (module)

 	boto.manage.propget (module)

 	boto.manage.server (module)

 	boto.manage.task (module)

 	boto.manage.volume (module)

 	boto.mturk (module)

 	boto.mturk.connection (module)

 	boto.mturk.notification (module)

 	boto.mturk.price (module)

 	boto.mturk.qualification (module)

 	boto.mturk.question (module)

 	boto.pyami (module)

 	boto.pyami.bootstrap (module)

 	
 	boto.pyami.config (module)

 	boto.pyami.copybot (module)

 	boto.pyami.installers (module)

 	boto.pyami.installers.ubuntu (module)

 	boto.pyami.installers.ubuntu.apache (module)

 	boto.pyami.installers.ubuntu.ebs (module)

 	boto.pyami.installers.ubuntu.installer (module)

 	boto.pyami.installers.ubuntu.mysql (module)

 	boto.pyami.installers.ubuntu.trac (module)

 	boto.pyami.launch_ami (module)

 	boto.pyami.scriptbase (module)

 	boto.pyami.startup (module)

 	boto.rds (module)

 	boto.rds.dbinstance (module)

 	boto.rds.dbsecuritygroup (module)

 	boto.rds.dbsnapshot (module)

 	boto.rds.event (module)

 	boto.rds.parametergroup (module)

 	boto.resultset (module)

 	boto.route53.connection (module)

 	boto.route53.exception (module)

 	boto.route53.hostedzone (module)

 	boto.s3.acl (module)

 	boto.s3.bucket (module)

 	boto.s3.bucketlistresultset (module)

 	boto.s3.connection (module)

 	boto.s3.deletemarker (module)

 	boto.s3.key (module)

 	boto.s3.multipart (module)

 	boto.s3.prefix (module)

 	boto.s3.resumable_download_handler (module)

 	boto.s3.user (module)

 	boto.sdb (module)

 	boto.sdb.connection (module)

 	boto.sdb.db (module)

 	boto.sdb.db.blob (module)

 	boto.sdb.db.key (module)

 	boto.sdb.db.manager (module)

 	boto.sdb.db.manager.sdbmanager (module)

 	boto.sdb.db.manager.xmlmanager (module)

 	boto.sdb.db.model (module)

 	boto.sdb.db.property (module)

 	boto.sdb.db.query (module)

 	boto.sdb.domain (module)

 	boto.sdb.item (module)

 	boto.sdb.queryresultset (module)

 	boto.services (module)

 	boto.services.bs (module)

 	boto.services.message (module)

 	boto.services.result (module)

 	boto.services.service (module)

 	boto.services.servicedef (module)

 	boto.services.sonofmmm (module)

 	boto.services.submit (module)

 	boto.ses (module)

 	boto.ses.connection (module)

 	boto.sns (module)

 	boto.sqs (module)

 	boto.sqs.attributes (module)

 	boto.sqs.batchresults (module)

 	boto.sqs.connection (module)

 	boto.sqs.jsonmessage (module)

 	boto.sqs.message (module)

 	boto.sqs.queue (module)

 	boto.sqs.regioninfo (module)

 	boto.sts (module)

 	boto.sts.credentials (module)

 	boto.utils (module)

 	boto.vpc (module)

 	boto.vpc.customergateway (module)

 	boto.vpc.dhcpoptions (module)

 	boto.vpc.subnet (module)

 	boto.vpc.vpc (module)

 	boto.vpc.vpnconnection (module)

 	boto.vpc.vpngateway (module)

 	BotoClientError

 	BotoServerError

 	BS (class in boto.services.bs)

 	Bucket (class in boto.file.bucket)

 	(class in boto.gs.bucket)

 	(class in boto.s3.bucket)

 	bucket_lister() (in module boto.s3.bucketlistresultset)

 	BucketListResultSet (class in boto.s3.bucketlistresultset)

 	BucketLoggingBody (boto.s3.bucket.Bucket attribute)

 	BucketPaymentBody (boto.s3.bucket.Bucket attribute)

 	BUFFER_SIZE (boto.gs.resumable_upload_handler.ResumableUploadHandler attribute)

 	BufferSize (boto.s3.key.Key attribute)

 	build_base_http_request() (boto.connection.AWSAuthConnection method)

 	build_dimension_param() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	build_filter_params() (boto.ec2.connection.EC2Connection method)

 	build_key_from_values() (boto.dynamodb.layer2.Layer2 method)

 	build_list_params() (boto.connection.AWSQueryConnection method)

 	(boto.ec2.autoscale.AutoScaleConnection method)

 	(boto.ec2.cloudwatch.CloudWatchConnection method)

 	(boto.ec2.elb.ELBConnection method)

 	build_path_base() (boto.s3.connection.OrdinaryCallingFormat method)

 	build_post_form_args() (boto.s3.connection.S3Connection method)

 	build_post_policy() (boto.s3.connection.S3Connection method)

 	build_put_params() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	build_tag_param_list() (boto.ec2.connection.EC2Connection method)

 	build_url_base() (boto.s3.connection.ProtocolIndependentOrdinaryCallingFormat method)

 	bundle() (boto.manage.server.Bundler method)

 	bundle_image() (boto.manage.server.Bundler method)

 	bundle_instance() (boto.ec2.connection.EC2Connection method)

 	Bundler (class in boto.manage.server)

 	BuyReservation (class in boto.ec2.buyreservation)

 	ByteTranslatingCallbackHandler (class in boto.s3.resumable_download_handler)

C

 	
 	calculate_stats() (boto.services.result.ResultProcessor method)

 	CalculatedProperty (class in boto.sdb.db.property)

 	call() (boto.s3.resumable_download_handler.ByteTranslatingCallbackHandler method)

 	cancel() (boto.fps.connection.FPSConnection method)

 	cancel_bundle_task() (boto.ec2.connection.EC2Connection method)

 	cancel_multipart_upload() (boto.s3.bucket.Bucket method)

 	cancel_spot_instance_requests() (boto.ec2.connection.EC2Connection method)

 	cancel_upload() (boto.s3.multipart.MultiPartUpload method)

 	canonical_string() (in module boto.utils)

 	change_data_dir() (boto.pyami.installers.ubuntu.mysql.MySQL method)

 	change_hit_type_of_hit() (boto.mturk.connection.MTurkConnection method)

 	change_message_visibility() (boto.sqs.connection.SQSConnection method)

 	change_rrsets() (boto.route53.connection.Route53Connection method)

 	change_storage_class() (boto.s3.key.Key method)

 	change_visibility() (boto.sqs.message.RawMessage method)

 	characters() (boto.handler.XmlHandler method)

 	(boto.sdb.domain.DomainDumpParser method)

 	check() (boto.manage.task.Task method)

 	check_extensions() (in module boto)

 	check_hour() (in module boto.manage.task)

 	check_instance() (boto.sdb.db.property.ReferenceProperty method)

 	check_lowercase_bucketname() (in module boto.s3.connection)

 	check_uuid() (boto.sdb.db.property.ReferenceProperty method)

 	checkfs() (boto.manage.volume.Volume method)

 	clean() (boto.connection.ConnectionPool method)

 	(boto.connection.HostConnectionPool method)

 	CLEAN_INTERVAL (boto.connection.ConnectionPool attribute)

 	cleanup() (boto.services.service.Service method)

 	clear() (boto.sqs.queue.Queue method)

 	close() (boto.connection.AWSAuthConnection method)

 	(boto.file.key.Key method)

 	(boto.s3.key.Key method)

 	closed (boto.s3.key.Key attribute)

 	CloudFrontConnection (class in boto.cloudfront)

 	CloudFrontServerError

 	CloudWatchConnection (class in boto.ec2.cloudwatch)

 	command (boto.manage.task.Task attribute)

 	CommandLineGetter (class in boto.manage.server)

 	(class in boto.manage.volume)

 	Commands (boto.services.bs.BS attribute)

 	complete_multipart_upload() (boto.s3.bucket.Bucket method)

 	complete_upload() (boto.s3.multipart.MultiPartUpload method)

 	CompleteMultiPartUpload (class in boto.s3.multipart)

 	compute_md5() (boto.s3.key.Key method)

 	(in module boto.utils)

 	Config (class in boto.pyami.config)

 	configure_health_check() (boto.ec2.elb.ELBConnection method)

 	(boto.ec2.elb.loadbalancer.LoadBalancer method)

 	configure_lifecycle() (boto.s3.bucket.Bucket method)

 	configure_versioning() (boto.s3.bucket.Bucket method)

 	configure_website() (boto.s3.bucket.Bucket method)

 	confirm_product() (boto.ec2.instance.Instance method)

 	confirm_product_instance() (boto.ec2.connection.EC2Connection method)

 	confirm_subscription() (boto.sns.SNSConnection method)

 	connect_autoscale() (in module boto)

 	connect_cloudformation() (in module boto)

 	connect_cloudfront() (in module boto)

 	connect_cloudwatch() (in module boto)

 	connect_dynamodb() (in module boto)

 	connect_ec2() (in module boto)

 	connect_ec2_endpoint() (in module boto)

 	connect_elb() (in module boto)

 	connect_emr() (in module boto)

 	connect_euca() (in module boto)

 	connect_fps() (in module boto)

 	connect_gs() (in module boto)

 	connect_ia() (in module boto)

 	connect_iam() (in module boto)

 	connect_mturk() (in module boto)

 	connect_rds() (in module boto)

 	connect_route53() (in module boto)

 	connect_s3() (in module boto)

 	connect_sdb() (in module boto)

 	connect_ses() (in module boto)

 	connect_sns() (in module boto)

 	connect_sqs() (in module boto)

 	connect_sts() (in module boto)

 	connect_to_region() (in module boto.ec2)

 	(in module boto.ec2.autoscale)

 	(in module boto.ec2.cloudwatch)

 	(in module boto.ec2.elb)

 	(in module boto.rds)

 	(in module boto.sdb)

 	(in module boto.ses)

 	(in module boto.sns)

 	(in module boto.sqs)

 	(in module boto.sts)

 	connect_vpc() (in module boto)

 	connect_walrus() (in module boto)

 	connection (boto.connection.AWSAuthConnection attribute)

 	ConnectionPool (class in boto.connection)

 	console_output (boto.manage.server.Server attribute)

 	ConsoleOutput (class in boto.ec2.instance)

 	(class in boto.exception)

 	
 	Constraint (class in boto.mturk.question)

 	Constraints (class in boto.mturk.question)

 	convert_num() (in module boto.dynamodb.layer2)

 	cooldown (boto.ec2.autoscale.group.AutoScalingGroup attribute)

 	copy() (boto.manage.volume.Volume method)

 	(boto.s3.key.Key method)

 	copy_bucket_acl() (boto.pyami.copybot.CopyBot method)

 	copy_key() (boto.s3.bucket.Bucket method)

 	copy_key_acl() (boto.pyami.copybot.CopyBot method)

 	copy_keys() (boto.pyami.copybot.CopyBot method)

 	copy_log() (boto.pyami.copybot.CopyBot method)

 	copy_part_from_key() (boto.s3.multipart.MultiPartUpload method)

 	copy_to_region() (boto.ec2.keypair.KeyPair method)

 	(boto.ec2.securitygroup.SecurityGroup method)

 	copy_x509() (boto.manage.server.Bundler method)

 	CopyBot (class in boto.pyami.copybot)

 	count() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.query.Query method)

 	(boto.sqs.queue.Queue method)

 	count_slow() (boto.sqs.queue.Queue method)

 	create() (boto.manage.server.Server class method)

 	(boto.manage.volume.Volume class method)

 	create_access_key() (boto.iam.connection.IAMConnection method)

 	create_account_alias() (boto.iam.connection.IAMConnection method)

 	create_alarm() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	(boto.ec2.cloudwatch.metric.Metric method)

 	create_app_cookie_stickiness_policy() (boto.ec2.elb.ELBConnection method)

 	(boto.ec2.elb.loadbalancer.LoadBalancer method)

 	create_auto_scaling_group() (boto.ec2.autoscale.AutoScaleConnection method)

 	create_backup_cleanup_script() (boto.pyami.installers.ubuntu.ebs.EBSInstaller method)

 	create_backup_script() (boto.pyami.installers.ubuntu.ebs.EBSInstaller method)

 	create_bucket() (boto.gs.connection.GSConnection method)

 	(boto.s3.connection.S3Connection method)

 	create_cookie_stickiness_policy() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	create_customer_gateway() (boto.vpc.VPCConnection method)

 	create_dbinstance() (boto.rds.RDSConnection method)

 	create_dbinstance_read_replica() (boto.rds.RDSConnection method)

 	create_dbsecurity_group() (boto.rds.RDSConnection method)

 	create_dbsnapshot() (boto.rds.RDSConnection method)

 	create_dhcp_options() (boto.vpc.VPCConnection method)

 	create_distribution() (boto.cloudfront.CloudFrontConnection method)

 	create_domain() (boto.sdb.connection.SDBConnection method)

 	create_from_current_instances() (boto.manage.server.Server class method)

 	create_from_instance_id() (boto.manage.server.Server class method)

 	create_from_latest_snapshot() (boto.manage.volume.Volume method)

 	create_from_snapshot() (boto.manage.volume.Volume method)

 	create_from_volume_id() (boto.manage.volume.Volume class method)

 	create_group() (boto.iam.connection.IAMConnection method)

 	create_hit() (boto.mturk.connection.MTurkConnection method)

 	create_hosted_zone() (boto.route53.connection.Route53Connection method)

 	create_image() (boto.ec2.connection.EC2Connection method)

 	create_internet_gateway() (boto.vpc.VPCConnection method)

 	create_invalidation_request() (boto.cloudfront.CloudFrontConnection method)

 	create_key_pair() (boto.ec2.connection.EC2Connection method)

 	create_launch_configuration() (boto.ec2.autoscale.AutoScaleConnection method)

 	create_lb_cookie_stickiness_policy() (boto.ec2.elb.ELBConnection method)

 	create_listener() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	create_listeners() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	create_load_balancer() (boto.ec2.elb.ELBConnection method)

 	create_load_balancer_listeners() (boto.ec2.elb.ELBConnection method)

 	create_login_profile() (boto.iam.connection.IAMConnection method)

 	create_network_interface() (boto.ec2.connection.EC2Connection method)

 	create_or_update_tags() (boto.ec2.autoscale.AutoScaleConnection method)

 	create_origin_access_identity() (boto.cloudfront.CloudFrontConnection method)

 	create_parameter_group() (boto.rds.RDSConnection method)

 	create_placement_group() (boto.ec2.connection.EC2Connection method)

 	create_qualification_type() (boto.mturk.connection.MTurkConnection method)

 	create_queue() (boto.sqs.connection.SQSConnection method)

 	create_route() (boto.vpc.VPCConnection method)

 	create_route_table() (boto.vpc.VPCConnection method)

 	create_scaling_policy() (boto.ec2.autoscale.AutoScaleConnection method)

 	create_scheduled_group_action() (boto.ec2.autoscale.AutoScaleConnection method)

 	create_schema() (boto.dynamodb.layer2.Layer2 method)

 	create_security_group() (boto.ec2.connection.EC2Connection method)

 	create_signed_url() (boto.cloudfront.distribution.Distribution method)

 	create_snapshot() (boto.ec2.connection.EC2Connection method)

 	(boto.ec2.volume.Volume method)

 	create_spot_datafeed_subscription() (boto.ec2.connection.EC2Connection method)

 	create_streaming_distribution() (boto.cloudfront.CloudFrontConnection method)

 	create_subnet() (boto.vpc.VPCConnection method)

 	create_table() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	create_tags() (boto.ec2.connection.EC2Connection method)

 	create_time (boto.dynamodb.table.Table attribute)

 	create_topic() (boto.sns.SNSConnection method)

 	create_user() (boto.iam.connection.IAMConnection method)

 	(boto.pyami.installers.ubuntu.installer.Installer method)

 	create_volume() (boto.ec2.connection.EC2Connection method)

 	create_vpc() (boto.vpc.VPCConnection method)

 	create_vpn_connection() (boto.vpc.VPCConnection method)

 	create_vpn_gateway() (boto.vpc.VPCConnection method)

 	create_working_dir() (boto.pyami.bootstrap.Bootstrap method)

 	Credentials (class in boto.sts.credentials)

 	CustomerGateway (class in boto.vpc.customergateway)

 	CustomOrigin (class in boto.cloudfront.origin)

D

 	
 	data_type (boto.sdb.db.property.BlobProperty attribute)

 	(boto.sdb.db.property.BooleanProperty attribute)

 	(boto.sdb.db.property.DateProperty attribute)

 	(boto.sdb.db.property.DateTimeProperty attribute)

 	(boto.sdb.db.property.FloatProperty attribute)

 	(boto.sdb.db.property.IntegerProperty attribute)

 	(boto.sdb.db.property.ListProperty attribute)

 	(boto.sdb.db.property.LongProperty attribute)

 	(boto.sdb.db.property.MapProperty attribute)

 	(boto.sdb.db.property.PasswordProperty attribute)

 	(boto.sdb.db.property.Property attribute)

 	(boto.sdb.db.property.ReferenceProperty attribute)

 	(boto.sdb.db.property.S3KeyProperty attribute)

 	(boto.sdb.db.property.TimeProperty attribute)

 	Datapoint (class in boto.ec2.cloudwatch.datapoint)

 	DateProperty (class in boto.sdb.db.property)

 	DateTimeProperty (class in boto.sdb.db.property)

 	DBInstance (class in boto.rds.dbinstance)

 	DBSecurityGroup (class in boto.rds.dbsecuritygroup)

 	DBSnapshot (class in boto.rds.dbsnapshot)

 	deactivate_mfa_device() (boto.iam.connection.IAMConnection method)

 	DebuggingArgs (boto.emr.connection.EmrConnection attribute)

 	DebuggingJar (boto.emr.connection.EmrConnection attribute)

 	decode() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	(boto.sqs.jsonmessage.JSONMessage method)

 	(boto.sqs.message.EncodedMHMessage method)

 	(boto.sqs.message.MHMessage method)

 	(boto.sqs.message.Message method)

 	(boto.sqs.message.RawMessage method)

 	decode_blob() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	decode_bool() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	decode_date() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	decode_datetime() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	decode_float() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	decode_int() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	decode_list() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	decode_long() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	decode_map() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	decode_map_element() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	decode_password() (boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	decode_prop() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	decode_reference() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	decode_string() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	decode_time() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	decode_value() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	(boto.sdb.item.Item method)

 	DEFAULT (boto.gs.connection.Location attribute)

 	(boto.s3.connection.Location attribute)

 	default_validator() (boto.sdb.db.property.Property method)

 	default_value() (boto.sdb.db.property.DateProperty method)

 	(boto.sdb.db.property.DateTimeProperty method)

 	(boto.sdb.db.property.ListProperty method)

 	(boto.sdb.db.property.MapProperty method)

 	(boto.sdb.db.property.Property method)

 	DefaultContentType (boto.s3.key.Key attribute)

 	(boto.sqs.connection.SQSConnection attribute)

 	DefaultHost (boto.cloudfront.CloudFrontConnection attribute)

 	(boto.dynamodb.layer1.Layer1 attribute)

 	(boto.gs.connection.GSConnection attribute)

 	(boto.route53.connection.Route53Connection attribute)

 	(boto.s3.connection.S3Connection attribute)

 	DefaultRegionEndpoint (boto.ec2.autoscale.AutoScaleConnection attribute)

 	(boto.ec2.cloudwatch.CloudWatchConnection attribute)

 	(boto.ec2.connection.EC2Connection attribute)

 	(boto.ec2.elb.ELBConnection attribute)

 	(boto.emr.connection.EmrConnection attribute)

 	(boto.rds.RDSConnection attribute)

 	(boto.sdb.connection.SDBConnection attribute)

 	(boto.ses.connection.SESConnection attribute)

 	(boto.sns.SNSConnection attribute)

 	(boto.sqs.connection.SQSConnection attribute)

 	(boto.sts.STSConnection attribute)

 	DefaultRegionName (boto.ec2.autoscale.AutoScaleConnection attribute)

 	(boto.ec2.cloudwatch.CloudWatchConnection attribute)

 	(boto.ec2.connection.EC2Connection attribute)

 	(boto.ec2.elb.ELBConnection attribute)

 	(boto.emr.connection.EmrConnection attribute)

 	(boto.rds.RDSConnection attribute)

 	(boto.sdb.connection.SDBConnection attribute)

 	(boto.ses.connection.SESConnection attribute)

 	(boto.sns.SNSConnection attribute)

 	(boto.sqs.connection.SQSConnection attribute)

 	(boto.sts.STSConnection attribute)

 	delete() (boto.cloudformation.stack.Stack method)

 	(boto.cloudfront.distribution.Distribution method)

 	(boto.cloudfront.distribution.StreamingDistribution method)

 	(boto.dynamodb.item.Item method)

 	(boto.dynamodb.table.Table method)

 	(boto.ec2.address.Address method)

 	(boto.ec2.autoscale.group.AutoScalingGroup method)

 	(boto.ec2.autoscale.launchconfig.LaunchConfiguration method)

 	(boto.ec2.autoscale.policy.ScalingPolicy method)

 	(boto.ec2.elb.loadbalancer.LoadBalancer method)

 	(boto.ec2.keypair.KeyPair method)

 	(boto.ec2.securitygroup.SecurityGroup method)

 	(boto.ec2.snapshot.Snapshot method)

 	(boto.ec2.volume.Volume method)

 	(boto.manage.server.Server method)

 	(boto.manage.volume.Volume method)

 	(boto.rds.dbsecuritygroup.DBSecurityGroup method)

 	(boto.s3.bucket.Bucket method)

 	(boto.s3.key.Key method)

 	(boto.sdb.db.model.Model method)

 	(boto.sdb.domain.Domain method)

 	(boto.sdb.item.Item method)

 	(boto.sqs.message.RawMessage method)

 	(boto.sqs.queue.Queue method)

 	(boto.vpc.vpc.VPC method)

 	(boto.vpc.vpnconnection.VpnConnection method)

 	delete_access_key() (boto.iam.connection.IAMConnection method)

 	delete_account_alias() (boto.iam.connection.IAMConnection method)

 	delete_alarms() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	delete_attribute() (boto.dynamodb.item.Item method)

 	delete_attributes() (boto.sdb.connection.SDBConnection method)

 	(boto.sdb.db.model.Model method)

 	(boto.sdb.domain.Domain method)

 	delete_auto_scaling_group() (boto.ec2.autoscale.AutoScaleConnection method)

 	delete_bucket() (boto.s3.connection.S3Connection method)

 	delete_customer_gateway() (boto.vpc.VPCConnection method)

 	delete_dbinstance() (boto.rds.RDSConnection method)

 	delete_dbsecurity_group() (boto.rds.RDSConnection method)

 	delete_dbsnapshot() (boto.rds.RDSConnection method)

 	delete_dhcp_options() (boto.vpc.VPCConnection method)

 	delete_distribution() (boto.cloudfront.CloudFrontConnection method)

 	
 	delete_domain() (boto.sdb.connection.SDBConnection method)

 	delete_group() (boto.iam.connection.IAMConnection method)

 	delete_group_policy() (boto.iam.connection.IAMConnection method)

 	delete_hosted_zone() (boto.route53.connection.Route53Connection method)

 	delete_internet_gateway() (boto.vpc.VPCConnection method)

 	delete_item() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	(boto.sdb.domain.Domain method)

 	delete_key() (boto.file.bucket.Bucket method)

 	(boto.s3.bucket.Bucket method)

 	delete_key_pair() (boto.ec2.connection.EC2Connection method)

 	delete_key_value() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	delete_keys() (boto.s3.bucket.Bucket method)

 	delete_launch_configuration() (boto.ec2.autoscale.AutoScaleConnection method)

 	delete_lb_policy() (boto.ec2.elb.ELBConnection method)

 	delete_lifecycle_configuration() (boto.s3.bucket.Bucket method)

 	delete_listener() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	delete_listeners() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	delete_load_balancer() (boto.ec2.elb.ELBConnection method)

 	delete_load_balancer_listeners() (boto.ec2.elb.ELBConnection method)

 	delete_login_profile() (boto.iam.connection.IAMConnection method)

 	delete_message() (boto.services.service.Service method)

 	(boto.sqs.connection.SQSConnection method)

 	(boto.sqs.queue.Queue method)

 	delete_message_from_handle() (boto.sqs.connection.SQSConnection method)

 	delete_network_interface() (boto.ec2.connection.EC2Connection method)

 	delete_object() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	delete_origin_access_identity() (boto.cloudfront.CloudFrontConnection method)

 	delete_parameter_group() (boto.rds.RDSConnection method)

 	delete_placement_group() (boto.ec2.connection.EC2Connection method)

 	delete_policy() (boto.ec2.autoscale.AutoScaleConnection method)

 	(boto.ec2.elb.loadbalancer.LoadBalancer method)

 	(boto.s3.bucket.Bucket method)

 	delete_queue() (boto.sqs.connection.SQSConnection method)

 	delete_route() (boto.vpc.VPCConnection method)

 	delete_route_table() (boto.vpc.VPCConnection method)

 	delete_scheduled_action() (boto.ec2.autoscale.AutoScaleConnection method)

 	delete_security_group() (boto.ec2.connection.EC2Connection method)

 	delete_server_cert() (boto.iam.connection.IAMConnection method)

 	delete_signing_cert() (boto.iam.connection.IAMConnection method)

 	delete_snapshot() (boto.ec2.connection.EC2Connection method)

 	delete_spot_datafeed_subscription() (boto.ec2.connection.EC2Connection method)

 	delete_streaming_distribution() (boto.cloudfront.CloudFrontConnection method)

 	delete_subnet() (boto.vpc.VPCConnection method)

 	delete_table() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	delete_tags() (boto.ec2.autoscale.AutoScaleConnection method)

 	(boto.ec2.connection.EC2Connection method)

 	delete_topic() (boto.sns.SNSConnection method)

 	delete_user() (boto.iam.connection.IAMConnection method)

 	delete_user_policy() (boto.iam.connection.IAMConnection method)

 	delete_verified_email_address() (boto.ses.connection.SESConnection method)

 	delete_volume() (boto.ec2.connection.EC2Connection method)

 	delete_vpc() (boto.vpc.VPCConnection method)

 	delete_vpn_connection() (boto.vpc.VPCConnection method)

 	delete_vpn_gateway() (boto.vpc.VPCConnection method)

 	delete_website_configuration() (boto.s3.bucket.Bucket method)

 	DeleteMarker (class in boto.s3.deletemarker)

 	deregister() (boto.ec2.image.Image method)

 	deregister_image() (boto.ec2.connection.EC2Connection method)

 	deregister_instances() (boto.ec2.elb.ELBConnection method)

 	(boto.ec2.elb.loadbalancer.LoadBalancer method)

 	describe() (boto.ec2.reservedinstance.ReservedInstancesOffering method)

 	describe_alarm_history() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	describe_alarms() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	(boto.ec2.cloudwatch.metric.Metric method)

 	describe_alarms_for_metric() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	describe_events() (boto.cloudformation.stack.Stack method)

 	describe_instance_health() (boto.ec2.elb.ELBConnection method)

 	describe_jobflow() (boto.emr.connection.EmrConnection method)

 	describe_jobflows() (boto.emr.connection.EmrConnection method)

 	describe_resource() (boto.cloudformation.stack.Stack method)

 	describe_resources() (boto.cloudformation.stack.Stack method)

 	describe_table() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	description (boto.manage.server.Server attribute)

 	detach() (boto.ec2.volume.Volume method)

 	(boto.manage.volume.Volume method)

 	detach_internet_gateway() (boto.vpc.VPCConnection method)

 	detach_lb_from_subnets() (boto.ec2.elb.ELBConnection method)

 	detach_network_interface() (boto.ec2.connection.EC2Connection method)

 	detach_subnets() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	detach_volume() (boto.ec2.connection.EC2Connection method)

 	Details (class in boto.ec2.instancestatus)

 	device (boto.manage.volume.Volume attribute)

 	DhcpConfigSet (class in boto.vpc.dhcpoptions)

 	DhcpOptions (class in boto.vpc.dhcpoptions)

 	DhcpValueSet (class in boto.vpc.dhcpoptions)

 	dict (boto.dynamodb.schema.Schema attribute)

 	disable() (boto.cloudfront.distribution.Distribution method)

 	disable_alarm_actions() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	disable_availability_zones() (boto.ec2.elb.ELBConnection method)

 	disable_hit() (boto.mturk.connection.MTurkConnection method)

 	disable_logging() (boto.gs.bucket.Bucket method)

 	(boto.s3.bucket.Bucket method)

 	disable_metrics_collection() (boto.ec2.autoscale.AutoScaleConnection method)

 	disable_zones() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	disassociate() (boto.ec2.address.Address method)

 	disassociate_address() (boto.ec2.connection.EC2Connection method)

 	disassociate_route_table() (boto.vpc.VPCConnection method)

 	dispose_hit() (boto.mturk.connection.MTurkConnection method)

 	dispose_qualification_type() (boto.mturk.connection.MTurkConnection method)

 	Distribution (class in boto.cloudfront.distribution)

 	DistributionConfig (class in boto.cloudfront.distribution)

 	DistributionSummary (class in boto.cloudfront.distribution)

 	DNSServerError

 	do_batches() (boto.services.bs.BS method)

 	do_reset() (boto.services.bs.BS method)

 	do_retrieve() (boto.services.bs.BS method)

 	do_start() (boto.services.bs.BS method)

 	do_status() (boto.services.bs.BS method)

 	do_submit() (boto.services.bs.BS method)

 	domain (boto.sdb.db.manager.sdbmanager.SDBManager attribute)

 	Domain (class in boto.sdb.domain)

 	domain_metadata() (boto.sdb.connection.SDBConnection method)

 	DomainDumpParser (class in boto.sdb.domain)

 	DomainMetaData (class in boto.sdb.domain)

 	dump() (boto.pyami.config.Config method)

 	(boto.sqs.queue.Queue method)

 	dump_safe() (boto.pyami.config.Config method)

 	dump_to_sdb() (boto.pyami.config.Config method)

 	duration_as_seconds() (boto.mturk.connection.MTurkConnection static method)

 	dynamize_attribute_updates() (boto.dynamodb.layer2.Layer2 method)

 	dynamize_expected_value() (boto.dynamodb.layer2.Layer2 method)

 	dynamize_item() (boto.dynamodb.layer2.Layer2 method)

 	dynamize_last_evaluated_key() (boto.dynamodb.layer2.Layer2 method)

 	dynamize_range_key_condition() (boto.dynamodb.layer2.Layer2 method)

 	dynamize_request_items() (boto.dynamodb.layer2.Layer2 method)

 	dynamize_scan_filter() (boto.dynamodb.layer2.Layer2 method)

 	dynamize_value() (boto.dynamodb.layer2.Layer2 method)

 	DynamoDBResponseError

E

 	
 	Ebs (class in boto.ec2.autoscale.launchconfig)

 	EBSInstaller (class in boto.pyami.installers.ubuntu.ebs)

 	EC2Connection (class in boto.ec2.connection)

 	EC2Object (class in boto.ec2.ec2object)

 	EC2RegionInfo (class in boto.ec2.regioninfo)

 	EC2ResponseError

 	EC2SecurityGroup (class in boto.rds.dbsecuritygroup)

 	ECSConnection (class in boto.ecs)

 	elastic_ip (boto.manage.server.Server attribute)

 	ELBConnection (class in boto.ec2.elb)

 	emit() (boto.NullHandler method)

 	(boto.utils.AuthSMTPHandler method)

 	empty() (boto.sdb.db.property.BooleanProperty method)

 	(boto.sdb.db.property.FloatProperty method)

 	(boto.sdb.db.property.IntegerProperty method)

 	(boto.sdb.db.property.ListProperty method)

 	(boto.sdb.db.property.LongProperty method)

 	(boto.sdb.db.property.MapProperty method)

 	(boto.sdb.db.property.Property method)

 	EmptyBucketLoggingBody (boto.s3.bucket.Bucket attribute)

 	EmrConnection (class in boto.emr.connection)

 	EmrObject (class in boto.emr.emrobject)

 	EmrResponseError

 	enable() (boto.cloudfront.distribution.Distribution method)

 	enable_alarm_actions() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	enable_availability_zones() (boto.ec2.elb.ELBConnection method)

 	enable_logging() (boto.gs.bucket.Bucket method)

 	(boto.s3.bucket.Bucket method)

 	enable_metrics_collection() (boto.ec2.autoscale.AutoScaleConnection method)

 	enable_mfa_device() (boto.iam.connection.IAMConnection method)

 	enable_zones() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	EnabledMetric (class in boto.ec2.autoscale.group)

 	encode() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	(boto.sqs.jsonmessage.JSONMessage method)

 	(boto.sqs.message.EncodedMHMessage method)

 	(boto.sqs.message.MHMessage method)

 	(boto.sqs.message.Message method)

 	(boto.sqs.message.RawMessage method)

 	encode_blob() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	encode_bool() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	encode_date() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	encode_datetime() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	encode_float() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	encode_int() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	encode_list() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	encode_long() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	encode_map() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	encode_password() (boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	encode_prop() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	encode_reference() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	(boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	encode_string() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	encode_time() (boto.sdb.db.manager.sdbmanager.SDBConverter method)

 	encode_value() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	EncodedMHMessage (class in boto.sqs.message)

 	endElement() (boto.cloudformation.stack.Output method)

 	(boto.cloudformation.stack.Parameter method)

 	(boto.cloudformation.stack.Stack method)

 	(boto.cloudformation.stack.StackEvent method)

 	(boto.cloudformation.stack.StackResource method)

 	(boto.cloudformation.stack.StackResourceSummary method)

 	(boto.cloudformation.stack.StackSummary method)

 	(boto.cloudformation.template.Template method)

 	(boto.cloudformation.template.TemplateParameter method)

 	(boto.cloudfront.distribution.Distribution method)

 	(boto.cloudfront.distribution.DistributionConfig method)

 	(boto.cloudfront.distribution.DistributionSummary method)

 	(boto.cloudfront.origin.CustomOrigin method)

 	(boto.cloudfront.origin.S3Origin method)

 	(boto.ec2.address.Address method)

 	(boto.ec2.autoscale.activity.Activity method)

 	(boto.ec2.autoscale.group.AutoScalingGroup method)

 	(boto.ec2.autoscale.group.AutoScalingGroupMetric method)

 	(boto.ec2.autoscale.group.EnabledMetric method)

 	(boto.ec2.autoscale.group.ProcessType method)

 	(boto.ec2.autoscale.group.SuspendedProcess method)

 	(boto.ec2.autoscale.instance.Instance method)

 	(boto.ec2.autoscale.launchconfig.BlockDeviceMapping method)

 	(boto.ec2.autoscale.launchconfig.Ebs method)

 	(boto.ec2.autoscale.launchconfig.InstanceMonitoring method)

 	(boto.ec2.autoscale.launchconfig.LaunchConfiguration method)

 	(boto.ec2.autoscale.policy.AdjustmentType method)

 	(boto.ec2.autoscale.policy.Alarm method)

 	(boto.ec2.autoscale.policy.MetricCollectionTypes method)

 	(boto.ec2.autoscale.policy.MetricCollectionTypes.BaseType method)

 	(boto.ec2.autoscale.policy.ScalingPolicy method)

 	(boto.ec2.autoscale.request.Request method)

 	(boto.ec2.autoscale.scheduled.ScheduledUpdateGroupAction method)

 	(boto.ec2.cloudwatch.datapoint.Datapoint method)

 	(boto.ec2.cloudwatch.metric.Metric method)

 	(boto.ec2.ec2object.EC2Object method)

 	(boto.ec2.elb.healthcheck.HealthCheck method)

 	(boto.ec2.elb.instancestate.InstanceState method)

 	(boto.ec2.elb.listelement.ListElement method)

 	(boto.ec2.elb.listener.Listener method)

 	(boto.ec2.elb.loadbalancer.LoadBalancer method)

 	(boto.ec2.image.Image method)

 	(boto.ec2.image.ImageAttribute method)

 	(boto.ec2.image.ProductCodes method)

 	(boto.ec2.instance.ConsoleOutput method)

 	(boto.ec2.instance.Group method)

 	(boto.ec2.instance.Instance method)

 	(boto.ec2.instance.InstanceAttribute method)

 	(boto.ec2.instance.Reservation method)

 	(boto.ec2.instance.SubParse method)

 	(boto.ec2.instanceinfo.InstanceInfo method)

 	(boto.ec2.instancestatus.Details method)

 	(boto.ec2.instancestatus.Event method)

 	(boto.ec2.instancestatus.EventSet method)

 	(boto.ec2.instancestatus.InstanceStatus method)

 	(boto.ec2.instancestatus.InstanceStatusSet method)

 	(boto.ec2.instancestatus.Status method)

 	(boto.ec2.keypair.KeyPair method)

 	(boto.ec2.reservedinstance.ReservedInstance method)

 	(boto.ec2.reservedinstance.ReservedInstancesOffering method)

 	(boto.ec2.securitygroup.GroupOrCIDR method)

 	(boto.ec2.securitygroup.IPPermissions method)

 	(boto.ec2.securitygroup.IPPermissionsList method)

 	(boto.ec2.securitygroup.SecurityGroup method)

 	(boto.ec2.snapshot.Snapshot method)

 	(boto.ec2.snapshot.SnapshotAttribute method)

 	(boto.ec2.volume.AttachmentSet method)

 	(boto.ec2.volume.Volume method)

 	(boto.ec2.zone.MessageSet method)

 	(boto.ec2.zone.Zone method)

 	(boto.ecs.item.ItemSet method)

 	(boto.ecs.item.ResponseGroup method)

 	(boto.emr.emrobject.Arg method)

 	(boto.emr.emrobject.EmrObject method)

 	(boto.exception.BotoServerError method)

 	(boto.exception.ConsoleOutput method)

 	(boto.exception.EC2ResponseError method)

 	(boto.exception.SQSError method)

 	(boto.exception.StorageCreateError method)

 	(boto.exception.StorageResponseError method)

 	(boto.gs.acl.ACL method)

 	(boto.gs.acl.Entries method)

 	(boto.gs.acl.Entry method)

 	(boto.gs.acl.Scope method)

 	(boto.gs.user.User method)

 	(boto.handler.XmlHandler method)

 	(boto.iam.summarymap.SummaryMap method)

 	(boto.mturk.connection.Assignment method)

 	(boto.mturk.connection.BaseAutoResultElement method)

 	(boto.mturk.connection.QuestionFormAnswer method)

 	(boto.mturk.price.Price method)

 	(boto.rds.dbinstance.DBInstance method)

 	(boto.rds.dbinstance.PendingModifiedValues method)

 	(boto.rds.dbsecuritygroup.DBSecurityGroup method)

 	(boto.rds.dbsecuritygroup.EC2SecurityGroup method)

 	(boto.rds.dbsecuritygroup.IPRange method)

 	(boto.rds.dbsnapshot.DBSnapshot method)

 	(boto.rds.event.Event method)

 	(boto.rds.parametergroup.Parameter method)

 	(boto.rds.parametergroup.ParameterGroup method)

 	(boto.resultset.BooleanResult method)

 	(boto.resultset.ResultSet method)

 	(boto.route53.hostedzone.HostedZone method)

 	(boto.s3.acl.ACL method)

 	(boto.s3.acl.Grant method)

 	(boto.s3.acl.Policy method)

 	(boto.s3.bucket.Bucket method)

 	(boto.s3.deletemarker.DeleteMarker method)

 	(boto.s3.key.Key method)

 	(boto.s3.multipart.CompleteMultiPartUpload method)

 	(boto.s3.multipart.MultiPartUpload method)

 	(boto.s3.multipart.Part method)

 	(boto.s3.prefix.Prefix method)

 	(boto.s3.user.User method)

 	(boto.sdb.domain.Domain method)

 	(boto.sdb.domain.DomainDumpParser method)

 	(boto.sdb.domain.DomainMetaData method)

 	(boto.sdb.item.Item method)

 	(boto.sqs.attributes.Attributes method)

 	(boto.sqs.batchresults.BatchResults method)

 	(boto.sqs.batchresults.ResultEntry method)

 	(boto.sqs.message.RawMessage method)

 	(boto.sqs.queue.Queue method)

 	(boto.sts.credentials.Credentials method)

 	(boto.sts.credentials.FederationToken method)

 	(boto.vpc.customergateway.CustomerGateway method)

 	(boto.vpc.dhcpoptions.DhcpConfigSet method)

 	(boto.vpc.dhcpoptions.DhcpOptions method)

 	(boto.vpc.dhcpoptions.DhcpValueSet method)

 	(boto.vpc.subnet.Subnet method)

 	(boto.vpc.vpc.VPC method)

 	(boto.vpc.vpnconnection.VpnConnection method)

 	(boto.vpc.vpngateway.Attachment method)

 	(boto.vpc.vpngateway.VpnGateway method)

 	
 	Entries (class in boto.gs.acl)

 	Entry (class in boto.gs.acl)

 	ETAG_REGEX (boto.s3.resumable_download_handler.ResumableDownloadHandler attribute)

 	EU (boto.gs.connection.Location attribute)

 	(boto.s3.connection.Location attribute)

 	Event (class in boto.ec2.instancestatus)

 	(class in boto.mturk.notification)

 	(class in boto.rds.event)

 	EVENT_PATTERN (boto.mturk.notification.NotificationMessage attribute)

 	EVENT_RE (boto.mturk.notification.NotificationMessage attribute)

 	EventSet (class in boto.ec2.instancestatus)

 	execute_policy() (boto.ec2.autoscale.AutoScaleConnection method)

 	exists() (boto.s3.key.Key method)

 	Expando (class in boto.sdb.db.model)

 	expire_hit() (boto.mturk.connection.MTurkConnection method)

 	expired (boto.mturk.connection.HIT attribute)

 	extend_hit() (boto.mturk.connection.MTurkConnection method)

 	ExternalQuestion (class in boto.mturk.question)

F

 	
 	FederationToken (class in boto.sts.credentials)

 	fetch() (boto.sdb.db.query.Query method)

 	fetch_file() (in module boto.utils)

 	fetch_s3_file() (boto.pyami.bootstrap.Bootstrap method)

 	Fields (boto.emr.emrobject.AddInstanceGroupsResponse attribute)

 	(boto.emr.emrobject.BootstrapAction attribute)

 	(boto.emr.emrobject.EmrObject attribute)

 	(boto.emr.emrobject.InstanceGroup attribute)

 	(boto.emr.emrobject.JobFlow attribute)

 	(boto.emr.emrobject.KeyValue attribute)

 	(boto.emr.emrobject.ModifyInstanceGroupsResponse attribute)

 	(boto.emr.emrobject.RunJobFlowResponse attribute)

 	(boto.emr.emrobject.Step attribute)

 	file (boto.sdb.db.blob.Blob attribute)

 	FileConnection (class in boto.file.connection)

 	FileUploadAnswer (class in boto.mturk.question)

 	filter() (boto.sdb.db.query.Query method)

 	
 	find() (boto.sdb.db.model.Model class method)

 	find_class() (in module boto.utils)

 	find_property() (boto.sdb.db.model.Model class method)

 	find_subclass() (boto.sdb.db.model.Model class method)

 	Flash (class in boto.mturk.question)

 	FloatProperty (class in boto.sdb.db.property)

 	for_key() (boto.services.message.ServiceMessage method)

 	format() (boto.manage.volume.Volume method)

 	FormattedContent (class in boto.mturk.question)

 	FPSConnection (class in boto.fps.connection)

 	FPSResponseError

 	FreeTextAnswer (class in boto.mturk.question)

 	freeze() (boto.manage.volume.Volume method)

 	from_json() (boto.sts.credentials.Credentials class method)

 	from_path() (boto.sdb.db.key.Key class method)

 	from_xml() (boto.sdb.db.model.Model class method)

 	(boto.sdb.domain.Domain method)

G

 	
 	generate_url() (boto.s3.bucket.Bucket method)

 	(boto.s3.connection.S3Connection method)

 	(boto.s3.key.Key method)

 	get() (boto.connection.HostConnectionPool method)

 	(boto.ec2.buyreservation.BuyReservation method)

 	(boto.ecs.item.ResponseGroup method)

 	(boto.manage.server.CommandLineGetter method)

 	(boto.manage.volume.CommandLineGetter method)

 	(boto.pyami.config.Config method)

 	(boto.services.servicedef.ServiceDef method)

 	(boto.sqs.message.MHMessage method)

 	(in module boto.manage.propget)

 	get_account_alias() (boto.iam.connection.IAMConnection method)

 	get_account_balance() (boto.mturk.connection.MTurkConnection method)

 	get_account_summary() (boto.iam.connection.IAMConnection method)

 	get_acl() (boto.gs.bucket.Bucket method)

 	(boto.s3.bucket.Bucket method)

 	(boto.s3.key.Key method)

 	get_acl_helper() (boto.gs.bucket.Bucket method)

 	get_activities() (boto.ec2.autoscale.group.AutoScalingGroup method)

 	get_all_access_keys() (boto.iam.connection.IAMConnection method)

 	get_all_activities() (boto.ec2.autoscale.AutoScaleConnection method)

 	get_all_addresses() (boto.ec2.connection.EC2Connection method)

 	get_all_adjustment_types() (boto.ec2.autoscale.AutoScaleConnection method)

 	get_all_autoscaling_instances() (boto.ec2.autoscale.AutoScaleConnection method)

 	get_all_buckets() (boto.s3.connection.S3Connection method)

 	get_all_bundle_tasks() (boto.ec2.connection.EC2Connection method)

 	get_all_customer_gateways() (boto.vpc.VPCConnection method)

 	get_all_dbinstances() (boto.rds.RDSConnection method)

 	get_all_dbparameter_groups() (boto.rds.RDSConnection method)

 	get_all_dbparameters() (boto.rds.RDSConnection method)

 	get_all_dbsecurity_groups() (boto.rds.RDSConnection method)

 	get_all_dbsnapshots() (boto.rds.RDSConnection method)

 	get_all_dhcp_options() (boto.vpc.VPCConnection method)

 	get_all_distributions() (boto.cloudfront.CloudFrontConnection method)

 	get_all_domains() (boto.sdb.connection.SDBConnection method)

 	get_all_events() (boto.rds.RDSConnection method)

 	get_all_group_policies() (boto.iam.connection.IAMConnection method)

 	get_all_groups() (boto.ec2.autoscale.AutoScaleConnection method)

 	(boto.iam.connection.IAMConnection method)

 	get_all_hits() (boto.mturk.connection.MTurkConnection method)

 	get_all_hosted_zones() (boto.route53.connection.Route53Connection method)

 	get_all_images() (boto.ec2.connection.EC2Connection method)

 	get_all_instance_status() (boto.ec2.connection.EC2Connection method)

 	get_all_instances() (boto.ec2.connection.EC2Connection method)

 	get_all_internet_gateways() (boto.vpc.VPCConnection method)

 	get_all_kernels() (boto.ec2.connection.EC2Connection method)

 	get_all_key_pairs() (boto.ec2.connection.EC2Connection method)

 	get_all_keys() (boto.file.bucket.Bucket method)

 	(boto.s3.bucket.Bucket method)

 	get_all_launch_configurations() (boto.ec2.autoscale.AutoScaleConnection method)

 	get_all_load_balancers() (boto.ec2.elb.ELBConnection method)

 	get_all_metric_collection_types() (boto.ec2.autoscale.AutoScaleConnection method)

 	get_all_mfa_devices() (boto.iam.connection.IAMConnection method)

 	get_all_multipart_uploads() (boto.s3.bucket.Bucket method)

 	get_all_network_interfaces() (boto.ec2.connection.EC2Connection method)

 	get_all_origin_access_identity() (boto.cloudfront.CloudFrontConnection method)

 	get_all_parts() (boto.s3.multipart.MultiPartUpload method)

 	get_all_placement_groups() (boto.ec2.connection.EC2Connection method)

 	get_all_policies() (boto.ec2.autoscale.AutoScaleConnection method)

 	get_all_queues() (boto.sqs.connection.SQSConnection method)

 	get_all_ramdisks() (boto.ec2.connection.EC2Connection method)

 	get_all_regions() (boto.ec2.connection.EC2Connection method)

 	get_all_reserved_instances() (boto.ec2.connection.EC2Connection method)

 	get_all_reserved_instances_offerings() (boto.ec2.connection.EC2Connection method)

 	get_all_route_tables() (boto.vpc.VPCConnection method)

 	get_all_rrsets() (boto.route53.connection.Route53Connection method)

 	get_all_scaling_process_types() (boto.ec2.autoscale.AutoScaleConnection method)

 	get_all_scheduled_actions() (boto.ec2.autoscale.AutoScaleConnection method)

 	get_all_security_groups() (boto.ec2.connection.EC2Connection method)

 	get_all_server_certs() (boto.iam.connection.IAMConnection method)

 	get_all_signing_certs() (boto.iam.connection.IAMConnection method)

 	get_all_snapshots() (boto.ec2.connection.EC2Connection method)

 	get_all_spot_instance_requests() (boto.ec2.connection.EC2Connection method)

 	get_all_streaming_distributions() (boto.cloudfront.CloudFrontConnection method)

 	get_all_subnets() (boto.vpc.VPCConnection method)

 	get_all_subscriptions() (boto.sns.SNSConnection method)

 	get_all_subscriptions_by_topic() (boto.sns.SNSConnection method)

 	get_all_tags() (boto.ec2.autoscale.AutoScaleConnection method)

 	(boto.ec2.connection.EC2Connection method)

 	get_all_topics() (boto.sns.SNSConnection method)

 	get_all_user_policies() (boto.iam.connection.IAMConnection method)

 	get_all_users() (boto.iam.connection.IAMConnection method)

 	get_all_versions() (boto.s3.bucket.Bucket method)

 	get_all_volumes() (boto.ec2.connection.EC2Connection method)

 	get_all_vpcs() (boto.vpc.VPCConnection method)

 	get_all_vpn_connections() (boto.vpc.VPCConnection method)

 	get_all_vpn_gateways() (boto.vpc.VPCConnection method)

 	get_all_zones() (boto.ec2.connection.EC2Connection method)

 	get_ami_id() (boto.manage.server.CommandLineGetter method)

 	get_ami_list() (boto.manage.server.CommandLineGetter method)

 	get_as_params() (boto.mturk.price.Price method)

 	(boto.mturk.qualification.LocaleRequirement method)

 	(boto.mturk.qualification.Qualifications method)

 	(boto.mturk.qualification.Requirement method)

 	(boto.mturk.question.ExternalQuestion method)

 	(boto.mturk.question.Overview method)

 	(boto.mturk.question.Question method)

 	get_as_xml() (boto.mturk.question.AnswerSpecification method)

 	(boto.mturk.question.Application method)

 	(boto.mturk.question.Constraint method)

 	(boto.mturk.question.Constraints method)

 	(boto.mturk.question.ExternalQuestion method)

 	(boto.mturk.question.FileUploadAnswer method)

 	(boto.mturk.question.FreeTextAnswer method)

 	(boto.mturk.question.List method)

 	(boto.mturk.question.NumberOfLinesSuggestion method)

 	(boto.mturk.question.OrderedContent method)

 	(boto.mturk.question.Overview method)

 	(boto.mturk.question.Question method)

 	(boto.mturk.question.QuestionContent method)

 	(boto.mturk.question.QuestionForm method)

 	(boto.mturk.question.SelectionAnswer method)

 	(boto.mturk.question.XMLTemplate method)

 	get_assignments() (boto.mturk.connection.MTurkConnection method)

 	get_attribute() (boto.ec2.instance.Instance method)

 	get_attributes() (boto.mturk.question.Constraint method)

 	(boto.sdb.connection.SDBConnection method)

 	(boto.sdb.domain.Domain method)

 	(boto.sqs.queue.Queue method)

 	get_aws_metadata() (in module boto.utils)

 	get_blob_bucket() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	get_body() (boto.contrib.ymlmessage.YAMLMessage method)

 	(boto.sqs.message.RawMessage method)

 	get_body_encoded() (boto.sqs.message.RawMessage method)

 	get_bucket() (boto.file.connection.FileConnection method)

 	(boto.s3.connection.S3Connection method)

 	get_bucket_server() (boto.s3.connection.OrdinaryCallingFormat method)

 	(boto.s3.connection.SubdomainCallingFormat method)

 	(boto.s3.connection.VHostCallingFormat method)

 	get_bundler() (boto.manage.server.Server method)

 	get_by_id() (boto.sdb.db.model.Model class method)

 	get_by_ids() (boto.sdb.db.model.Model class method)

 	get_by_key_name() (boto.sdb.db.model.Model class method)

 	get_canonical_user_id() (boto.s3.connection.S3Connection method)

 	get_change() (boto.route53.connection.Route53Connection method)

 	get_choices() (boto.sdb.db.property.Property method)

 	get_cmdshell() (boto.manage.server.Server method)

 	get_console_output() (boto.ec2.connection.EC2Connection method)

 	(boto.ec2.instance.Instance method)

 	get_contents_as_string() (boto.file.key.Key method)

 	(boto.s3.key.Key method)

 	get_contents_to_file() (boto.s3.key.Key method)

 	get_contents_to_filename() (boto.s3.key.Key method)

 	get_cur_file_size() (in module boto.s3.resumable_download_handler)

 	get_def_acl() (boto.gs.bucket.Bucket method)

 	get_description() (boto.manage.server.CommandLineGetter method)

 	get_device() (boto.manage.volume.CommandLineGetter method)

 	get_distribution() (boto.cloudfront.distribution.DistributionSummary method)

 	(boto.cloudfront.distribution.StreamingDistributionSummary method)

 	get_distribution_config() (boto.cloudfront.CloudFrontConnection method)

 	get_distribution_info() (boto.cloudfront.CloudFrontConnection method)

 	get_doc() (boto.sdb.db.manager.xmlmanager.XMLManager method)

 	get_domain() (boto.sdb.connection.SDBConnection method)

 	get_domain_and_name() (boto.sdb.connection.SDBConnection method)

 	get_dynamodb_type() (boto.dynamodb.layer2.Layer2 method)

 	get_ec2_connection() (boto.manage.volume.Volume method)

 	get_etag() (boto.cloudfront.CloudFrontConnection method)

 	get_federation_token() (boto.sts.STSConnection method)

 	get_file() (boto.file.key.Key method)

 	(boto.s3.key.Key method)

 	(boto.s3.resumable_download_handler.ResumableDownloadHandler method)

 	(boto.services.service.Service method)

 	get_group() (boto.iam.connection.IAMConnection method)

 	(boto.manage.server.CommandLineGetter method)

 	get_group_policy() (boto.iam.connection.IAMConnection method)

 	get_groups_for_user() (boto.iam.connection.IAMConnection method)

 	get_help() (boto.mturk.connection.MTurkConnection method)

 	get_hit() (boto.mturk.connection.MTurkConnection method)

 	get_hosted_zone() (boto.route53.connection.Route53Connection method)

 	get_http_connection() (boto.connection.AWSAuthConnection method)

 	(boto.connection.ConnectionPool method)

 	
 	get_image() (boto.ec2.connection.EC2Connection method)

 	get_image_attribute() (boto.ec2.connection.EC2Connection method)

 	get_inner_content() (boto.mturk.question.Application method)

 	(boto.mturk.question.Flash method)

 	(boto.mturk.question.JavaApplet method)

 	get_instance() (boto.pyami.config.Config method)

 	get_instance_attribute() (boto.ec2.connection.EC2Connection method)

 	get_instance_health() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	get_instance_metadata() (in module boto.utils)

 	get_instance_type() (boto.ec2.buyreservation.BuyReservation method)

 	(boto.manage.server.CommandLineGetter method)

 	get_instance_userdata() (in module boto.utils)

 	get_item() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	(boto.dynamodb.table.Table method)

 	(boto.sdb.domain.Domain method)

 	get_kernel() (boto.ec2.image.Image method)

 	get_key() (boto.file.bucket.Bucket method)

 	(boto.manage.server.CommandLineGetter method)

 	(boto.s3.bucket.Bucket method)

 	get_key_name() (boto.services.submit.Submitter method)

 	get_key_pair() (boto.ec2.connection.EC2Connection method)

 	get_key_value() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	get_keywords_as_string() (boto.mturk.connection.MTurkConnection static method)

 	get_launch_permissions() (boto.ec2.image.Image method)

 	get_lifecycle_config() (boto.s3.bucket.Bucket method)

 	get_lineage() (boto.sdb.db.model.Model class method)

 	get_list() (boto.connection.AWSQueryConnection method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	get_location() (boto.s3.bucket.Bucket method)

 	get_logging_status() (boto.s3.bucket.Bucket method)

 	get_login_profiles() (boto.iam.connection.IAMConnection method)

 	get_manager() (in module boto.sdb.db.manager)

 	get_md5_from_hexdigest() (boto.s3.key.Key method)

 	get_messages() (boto.sqs.queue.Queue method)

 	get_metadata() (boto.s3.key.Key method)

 	(boto.sdb.domain.Domain method)

 	get_metric_statistics() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	get_mount_point() (boto.manage.volume.CommandLineGetter method)

 	get_name() (boto.manage.server.CommandLineGetter method)

 	(boto.manage.volume.CommandLineGetter method)

 	get_next_token() (boto.sdb.db.query.Query method)

 	get_oai_value() (in module boto.cloudfront.origin)

 	get_obj() (boto.services.servicedef.ServiceDef method)

 	get_object() (boto.connection.AWSQueryConnection method)

 	(boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	get_object_from_doc() (boto.sdb.db.manager.xmlmanager.XMLManager method)

 	get_object_from_id() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	get_objects() (boto.cloudfront.distribution.Distribution method)

 	get_or_insert() (boto.sdb.db.model.Model class method)

 	get_origin_access_identity_config() (boto.cloudfront.CloudFrontConnection method)

 	get_origin_access_identity_info() (boto.cloudfront.CloudFrontConnection method)

 	get_params() (boto.ec2.connection.EC2Connection method)

 	(boto.rds.parametergroup.ParameterGroup method)

 	get_password_data() (boto.ec2.connection.EC2Connection method)

 	get_path() (boto.connection.AWSAuthConnection method)

 	get_permissions() (boto.ec2.snapshot.Snapshot method)

 	get_policy() (boto.s3.bucket.Bucket method)

 	get_price_as_price() (boto.mturk.connection.MTurkConnection static method)

 	get_property() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	get_props_from_doc() (boto.sdb.db.manager.xmlmanager.XMLManager method)

 	get_proxy_auth_header() (boto.connection.AWSAuthConnection method)

 	get_qualification_requests() (boto.mturk.connection.MTurkConnection method)

 	get_qualification_score() (boto.mturk.connection.MTurkConnection method)

 	get_qualification_type() (boto.mturk.connection.MTurkConnection method)

 	get_qualifications_for_qualification_type() (boto.mturk.connection.MTurkConnection method)

 	get_quantity() (boto.ec2.buyreservation.BuyReservation method)

 	(boto.manage.server.CommandLineGetter method)

 	get_query() (boto.sdb.db.query.Query method)

 	get_queue() (boto.sqs.connection.SQSConnection method)

 	get_queue_attributes() (boto.sqs.connection.SQSConnection method)

 	get_ramdisk() (boto.ec2.image.Image method)

 	get_raw_item() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	get_recipient_verification_status() (boto.fps.connection.FPSConnection method)

 	get_region() (boto.ec2.buyreservation.BuyReservation method)

 	(boto.manage.server.CommandLineGetter method)

 	(boto.manage.volume.CommandLineGetter method)

 	(in module boto.ec2)

 	(in module boto.sdb)

 	(in module boto.ses)

 	(in module boto.sns)

 	(in module boto.sts)

 	get_request_payment() (boto.s3.bucket.Bucket method)

 	get_response() (boto.ecs.ECSConnection method)

 	(boto.iam.connection.IAMConnection method)

 	get_results() (boto.services.result.ResultProcessor method)

 	get_results_from_bucket() (boto.services.result.ResultProcessor method)

 	get_results_from_domain() (boto.services.result.ResultProcessor method)

 	get_results_from_queue() (boto.services.result.ResultProcessor method)

 	get_reviewable_hits() (boto.mturk.connection.MTurkConnection method)

 	get_s3_connection() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	get_send_quota() (boto.ses.connection.SESConnection method)

 	get_send_statistics() (boto.ses.connection.SESConnection method)

 	get_server_certificate() (boto.iam.connection.IAMConnection method)

 	get_session_token() (boto.sts.STSConnection method)

 	get_signin_url() (boto.iam.connection.IAMConnection method)

 	get_size() (boto.manage.volume.CommandLineGetter method)

 	get_snapshot_attribute() (boto.ec2.connection.EC2Connection method)

 	get_snapshot_from_date() (boto.manage.volume.Volume method)

 	get_snapshot_range() (boto.manage.volume.Volume method)

 	get_snapshots() (boto.manage.volume.Volume method)

 	get_spot_datafeed_subscription() (boto.ec2.connection.EC2Connection method)

 	get_spot_price_history() (boto.ec2.connection.EC2Connection method)

 	get_ssh_client() (boto.manage.server.Server method)

 	get_ssh_key_file() (boto.manage.server.Server method)

 	get_status() (boto.connection.AWSQueryConnection method)

 	get_streaming_distribution_config() (boto.cloudfront.CloudFrontConnection method)

 	get_streaming_distribution_info() (boto.cloudfront.CloudFrontConnection method)

 	get_subresource() (boto.s3.bucket.Bucket method)

 	get_table() (boto.dynamodb.layer2.Layer2 method)

 	get_template() (boto.cloudformation.stack.Stack method)

 	get_text_value() (boto.sdb.db.manager.xmlmanager.XMLConverter method)

 	get_timeout() (boto.sqs.queue.Queue method)

 	get_token_by_caller_reference() (boto.fps.connection.FPSConnection method)

 	get_token_by_caller_token() (boto.fps.connection.FPSConnection method)

 	get_topic_attributes() (boto.sns.SNSConnection method)

 	get_torrent_file() (boto.s3.key.Key method)

 	get_tracker_uri() (boto.gs.resumable_upload_handler.ResumableUploadHandler method)

 	get_transaction_status() (boto.fps.connection.FPSConnection method)

 	get_ts() (in module boto.utils)

 	get_tuple() (boto.ec2.elb.listener.Listener method)

 	get_usage() (boto.sdb.connection.SDBConnection method)

 	get_user() (boto.iam.connection.IAMConnection method)

 	(boto.pyami.config.Config method)

 	get_user_policy() (boto.iam.connection.IAMConnection method)

 	get_utf8_value() (boto.connection.AWSQueryConnection method)

 	(in module boto.utils)

 	get_value() (boto.pyami.config.Config method)

 	(boto.rds.parametergroup.Parameter method)

 	get_value_for_datastore() (boto.sdb.db.property.CalculatedProperty method)

 	(boto.sdb.db.property.DateProperty method)

 	(boto.sdb.db.property.DateTimeProperty method)

 	(boto.sdb.db.property.PasswordProperty method)

 	(boto.sdb.db.property.Property method)

 	(boto.sdb.db.property.S3KeyProperty method)

 	get_versioning_status() (boto.s3.bucket.Bucket method)

 	get_website_configuration() (boto.s3.bucket.Bucket method)

 	get_website_endpoint() (boto.s3.bucket.Bucket method)

 	get_xml_acl() (boto.s3.bucket.Bucket method)

 	(boto.s3.key.Key method)

 	get_xmlmanager() (boto.sdb.db.model.Model class method)

 	get_zone() (boto.ec2.buyreservation.BuyReservation method)

 	(boto.manage.server.CommandLineGetter method)

 	(boto.manage.volume.CommandLineGetter method)

 	getbool() (boto.pyami.config.Config method)

 	(boto.services.servicedef.ServiceDef method)

 	getfloat() (boto.pyami.config.Config method)

 	getint() (boto.pyami.config.Config method)

 	(boto.services.servicedef.ServiceDef method)

 	getint_user() (boto.pyami.config.Config method)

 	getOutput() (boto.utils.ShellCommand method)

 	getStatus() (boto.utils.ShellCommand method)

 	Grant (class in boto.s3.acl)

 	grant_bonus() (boto.mturk.connection.MTurkConnection method)

 	grant_qualification() (boto.mturk.connection.MTurkConnection method)

 	Group (class in boto.ec2.instance)

 	GroupOrCIDR (class in boto.ec2.securitygroup)

 	groups (boto.manage.server.Server attribute)

 	grow() (boto.manage.volume.Volume method)

 	gs_access_key_id (boto.connection.AWSAuthConnection attribute)

 	gs_secret_access_key (boto.connection.AWSAuthConnection attribute)

 	GSConnection (class in boto.gs.connection)

 	GSCopyError

 	GSCreateError

 	GSDataError

 	GSPermissionsError

 	GSResponseError

 	guess_mime_type() (in module boto.utils)

H

 	
 	handle_encryption_headers() (boto.s3.key.Key method)

 	handle_mount_point() (boto.pyami.installers.ubuntu.ebs.EBSInstaller method)

 	handle_proxy() (boto.connection.AWSAuthConnection method)

 	handle_version_headers() (boto.s3.key.Key method)

 	has_id_or_name() (boto.sdb.db.key.Key method)

 	has_item() (boto.dynamodb.table.Table method)

 	has_key() (boto.sqs.message.MHMessage method)

 	has_option() (boto.services.servicedef.ServiceDef method)

 	hash_key (boto.dynamodb.item.Item attribute)

 	hash_key_name (boto.dynamodb.item.Item attribute)

 	(boto.dynamodb.schema.Schema attribute)

 	
 	hash_key_type (boto.dynamodb.schema.Schema attribute)

 	hashfunc() (boto.utils.Password method)

 	HealthCheck (class in boto.ec2.elb.healthcheck)

 	HIT (class in boto.mturk.connection)

 	HostConnectionPool (class in boto.connection)

 	HostedZone (class in boto.route53.hostedzone)

 	hostname (boto.manage.server.Server attribute)

 	hour (boto.manage.task.Task attribute)

 	HTTPRequest (class in boto.connection)

I

 	
 	IAMConnection (class in boto.iam.connection)

 	id (boto.sdb.db.model.Model attribute)

 	(boto.sqs.queue.Queue attribute)

 	id() (boto.sdb.db.key.Key method)

 	id_or_name() (boto.sdb.db.key.Key method)

 	Image (class in boto.ec2.image)

 	ImageAttribute (class in boto.ec2.image)

 	import_key_pair() (boto.ec2.connection.EC2Connection method)

 	init_logging() (in module boto)

 	initiate_multipart_upload() (boto.s3.bucket.Bucket method)

 	install() (boto.manage.server.Server method)

 	(boto.pyami.installers.Installer method)

 	(boto.pyami.installers.ubuntu.apache.Apache method)

 	(boto.pyami.installers.ubuntu.ebs.EBSInstaller method)

 	(boto.pyami.installers.ubuntu.installer.Installer method)

 	(boto.pyami.installers.ubuntu.mysql.MySQL method)

 	(boto.pyami.installers.ubuntu.trac.Trac method)

 	install_caller_instruction() (boto.fps.connection.FPSConnection method)

 	install_payment_instruction() (boto.fps.connection.FPSConnection method)

 	install_recipient_instruction() (boto.fps.connection.FPSConnection method)

 	install_xfs() (boto.manage.volume.Volume method)

 	Installer (class in boto.pyami.installers)

 	(class in boto.pyami.installers.ubuntu.installer)

 	Instance (class in boto.ec2.autoscale.instance)

 	(class in boto.ec2.instance)

 	instance_id (boto.manage.server.Server attribute)

 	instance_type (boto.manage.server.Server attribute)

 	InstanceAttribute (class in boto.ec2.instance)

 	
 	InstanceGroup (class in boto.emr.emrobject)

 	InstanceInfo (class in boto.ec2.instanceinfo)

 	InstanceMonitoring (class in boto.ec2.autoscale.launchconfig)

 	instances() (boto.ec2.securitygroup.SecurityGroup method)

 	InstanceState (class in boto.ec2.elb.instancestate)

 	InstanceStatus (class in boto.ec2.instancestatus)

 	InstanceStatusSet (class in boto.ec2.instancestatus)

 	IntegerProperty (class in boto.sdb.db.property)

 	InvalidAclError

 	invalidation_request_status() (boto.cloudfront.CloudFrontConnection method)

 	InvalidUriError

 	IPPermissions (class in boto.ec2.securitygroup)

 	IPPermissionsList (class in boto.ec2.securitygroup)

 	IPRange (class in boto.rds.dbsecuritygroup)

 	is_expired() (boto.sts.credentials.Credentials method)

 	is_num() (in module boto.dynamodb.layer2)

 	is_str() (in module boto.dynamodb.layer2)

 	is_stream() (boto.file.key.Key method)

 	is_valid() (boto.mturk.question.QuestionForm method)

 	Item (class in boto.dynamodb.item)

 	(class in boto.ecs.item)

 	(class in boto.sdb.item)

 	item_count (boto.dynamodb.table.Table attribute)

 	item_object_hook() (in module boto.dynamodb.layer2)

 	item_search() (boto.ecs.ECSConnection method)

 	items() (boto.sqs.message.MHMessage method)

 	ItemSet (class in boto.ecs.item)

 	ItemThread (class in boto.sdb.connection)

J

 	
 	jar() (boto.emr.step.JarStep method)

 	(boto.emr.step.Step method)

 	(boto.emr.step.StreamingStep method)

 	
 	JarStep (class in boto.emr.step)

 	JavaApplet (class in boto.mturk.question)

 	JobFlow (class in boto.emr.emrobject)

 	JSONMessage (class in boto.sqs.jsonmessage)

K

 	
 	Key (class in boto.file.key)

 	(class in boto.gs.key)

 	(class in boto.s3.key)

 	(class in boto.sdb.db.key)

 	key() (boto.sdb.db.model.Model method)

 	key_name (boto.manage.server.Server attribute)

 	KEY_REGULAR_FILE (boto.file.key.Key attribute)

 	
 	KEY_STREAM (boto.file.key.Key attribute)

 	KEY_STREAM_READABLE (boto.file.key.Key attribute)

 	KEY_STREAM_WRITABLE (boto.file.key.Key attribute)

 	KeyPair (class in boto.ec2.keypair)

 	keys() (boto.sqs.message.MHMessage method)

 	KeyValue (class in boto.emr.emrobject)

 	kind() (boto.sdb.db.key.Key method)

 	(boto.sdb.db.model.Model class method)

L

 	
 	last_executed (boto.manage.task.Task attribute)

 	last_output (boto.manage.task.Task attribute)

 	last_status (boto.manage.task.Task attribute)

 	launch_time (boto.manage.server.Server attribute)

 	LaunchConfiguration (class in boto.ec2.autoscale.launchconfig)

 	Layer1 (class in boto.dynamodb.layer1)

 	Layer2 (class in boto.dynamodb.layer2)

 	LengthConstraint (class in boto.mturk.question)

 	List (class in boto.mturk.question)

 	list() (boto.s3.bucket.Bucket method)

 	list_grants() (boto.gs.bucket.Bucket method)

 	(boto.s3.bucket.Bucket method)

 	list_metrics() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	list_multipart_uploads() (boto.s3.bucket.Bucket method)

 	list_resources() (boto.cloudformation.stack.Stack method)

 	list_tables() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	list_verified_email_addresses() (boto.ses.connection.SESConnection method)

 	list_versions() (boto.s3.bucket.Bucket method)

 	ListElement (class in boto.ec2.elb.listelement)

 	Listener (class in boto.ec2.elb.listener)

 	ListProperty (class in boto.sdb.db.property)

 	load() (boto.sdb.db.model.Model method)

 	(boto.sdb.item.Item method)

 	(boto.sqs.queue.Queue method)

 	(boto.sts.credentials.Credentials class method)

 	
 	load_boto() (boto.pyami.bootstrap.Bootstrap method)

 	load_credential_file() (boto.pyami.config.Config method)

 	load_from_file() (boto.sqs.queue.Queue method)

 	load_from_filename() (boto.sqs.queue.Queue method)

 	load_from_path() (boto.pyami.config.Config method)

 	load_from_s3() (boto.sqs.queue.Queue method)

 	load_from_sdb() (boto.pyami.config.Config method)

 	load_object() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	load_packages() (boto.pyami.bootstrap.Bootstrap method)

 	LoadBalancer (class in boto.ec2.elb.loadbalancer)

 	LocaleRequirement (class in boto.mturk.qualification)

 	Location (class in boto.gs.connection)

 	(class in boto.s3.connection)

 	log_message() (boto.services.result.ResultProcessor method)

 	LogFileName (boto.services.result.ResultProcessor attribute)

 	LoggingGroup (boto.s3.bucket.Bucket attribute)

 	LongProperty (class in boto.sdb.db.property)

 	lookup() (boto.dynamodb.layer2.Layer2 method)

 	(boto.dynamodb.table.Table method)

 	(boto.s3.bucket.Bucket method)

 	(boto.s3.connection.S3Connection method)

 	(boto.sdb.connection.SDBConnection method)

 	(boto.sqs.connection.SQSConnection method)

 	(in module boto)

 	LRUCache (class in boto.utils)

M

 	
 	main() (boto.pyami.bootstrap.Bootstrap method)

 	(boto.pyami.copybot.CopyBot method)

 	(boto.pyami.installers.ubuntu.apache.Apache method)

 	(boto.pyami.installers.ubuntu.ebs.EBSInstaller method)

 	(boto.pyami.installers.ubuntu.mysql.MySQL method)

 	(boto.pyami.installers.ubuntu.trac.Trac method)

 	(boto.pyami.scriptbase.ScriptBase method)

 	(boto.pyami.startup.Startup method)

 	(boto.services.bs.BS method)

 	(boto.services.service.Service method)

 	(in module boto.pyami.launch_ami)

 	main_class() (boto.emr.step.JarStep method)

 	(boto.emr.step.Step method)

 	(boto.emr.step.StreamingStep method)

 	make_fs() (boto.pyami.installers.ubuntu.ebs.EBSInstaller method)

 	make_marketplace_registration_url() (boto.fps.connection.FPSConnection method)

 	make_public() (boto.s3.bucket.Bucket method)

 	(boto.s3.key.Key method)

 	make_ready() (boto.manage.volume.Volume method)

 	make_request() (boto.connection.AWSAuthConnection method)

 	(boto.connection.AWSQueryConnection method)

 	(boto.dynamodb.layer1.Layer1 method)

 	(boto.route53.connection.Route53Connection method)

 	(boto.s3.connection.S3Connection method)

 	make_url() (boto.fps.connection.FPSConnection method)

 	make_value_from_datastore() (boto.sdb.db.property.PasswordProperty method)

 	(boto.sdb.db.property.Property method)

 	MapProperty (class in boto.sdb.db.property)

 	marshal_object() (boto.sdb.db.manager.xmlmanager.XMLManager method)

 	MAX_SELECTION_COUNT_XML_TEMPLATE (boto.mturk.question.SelectionAnswer attribute)

 	merge() (boto.rds.parametergroup.Parameter method)

 	merge_meta() (in module boto.utils)

 	Message (class in boto.sqs.message)

 	message_id (boto.manage.task.Task attribute)

 	
 	MessageSet (class in boto.ec2.zone)

 	Metric (class in boto.ec2.cloudwatch.metric)

 	MetricCollectionTypes (class in boto.ec2.autoscale.policy)

 	MetricCollectionTypes.BaseType (class in boto.ec2.autoscale.policy)

 	MetricCollectionTypes.Granularity (class in boto.ec2.autoscale.policy)

 	MetricCollectionTypes.Metric (class in boto.ec2.autoscale.policy)

 	MFADeleteRE (boto.s3.bucket.Bucket attribute)

 	MHMessage (class in boto.sqs.message)

 	MIN_SELECTION_COUNT_XML_TEMPLATE (boto.mturk.question.SelectionAnswer attribute)

 	mkdir() (boto.pyami.scriptbase.ScriptBase method)

 	mklist() (in module boto.utils)

 	Model (class in boto.sdb.db.model)

 	ModelMeta (class in boto.sdb.db.model)

 	modifiable() (boto.rds.parametergroup.ParameterGroup method)

 	modify() (boto.rds.dbinstance.DBInstance method)

 	modify_attribute() (boto.ec2.instance.Instance method)

 	modify_dbinstance() (boto.rds.RDSConnection method)

 	modify_image_attribute() (boto.ec2.connection.EC2Connection method)

 	modify_instance_attribute() (boto.ec2.connection.EC2Connection method)

 	modify_instance_groups() (boto.emr.connection.EmrConnection method)

 	modify_parameter_group() (boto.rds.RDSConnection method)

 	modify_snapshot_attribute() (boto.ec2.connection.EC2Connection method)

 	ModifyInstanceGroupsResponse (class in boto.emr.emrobject)

 	monitor() (boto.ec2.instance.Instance method)

 	monitor_instance() (boto.ec2.connection.EC2Connection method)

 	monitor_instances() (boto.ec2.connection.EC2Connection method)

 	mount() (boto.manage.volume.Volume method)

 	mount_point (boto.manage.volume.Volume attribute)

 	MTurkConnection (class in boto.mturk.connection)

 	MTurkRequestError

 	multipart_upload_lister() (in module boto.s3.bucketlistresultset)

 	MultiPartUpload (class in boto.s3.multipart)

 	MultiPartUploadListResultSet (class in boto.s3.bucketlistresultset)

 	MySQL (class in boto.pyami.installers.ubuntu.mysql)

N

 	
 	name (boto.dynamodb.table.Table attribute)

 	(boto.manage.server.Server attribute)

 	(boto.manage.task.Task attribute)

 	(boto.manage.volume.Volume attribute)

 	(boto.sdb.db.property.Property attribute)

 	(boto.sqs.queue.Queue attribute)

 	name() (boto.sdb.db.key.Key method)

 	NameSpace (boto.s3.acl.Grant attribute)

 	new_batch_list() (boto.dynamodb.layer2.Layer2 method)

 	new_doc() (boto.sdb.db.manager.xmlmanager.XMLManager method)

 	new_http_connection() (boto.connection.AWSAuthConnection method)

 	new_item() (boto.dynamodb.table.Table method)

 	(boto.sdb.domain.Domain method)

 	new_key() (boto.file.bucket.Bucket method)

 	(boto.s3.bucket.Bucket method)

 	new_message() (boto.sqs.queue.Queue method)

 	next() (boto.ecs.item.ItemSet method)

 	(boto.s3.key.Key method)

 	(boto.sdb.db.blob.Blob method)

 	(boto.sdb.db.query.Query method)

 	(boto.sdb.queryresultset.SelectResultSet method)

 	
 	next_token (boto.sdb.db.query.Query attribute)

 	NoAuthHandlerFound

 	NOTIFICATION_VERSION (boto.mturk.notification.NotificationMessage attribute)

 	NOTIFICATION_WSDL (boto.mturk.notification.NotificationMessage attribute)

 	NotificationMessage (class in boto.mturk.notification)

 	notify() (boto.pyami.scriptbase.ScriptBase method)

 	(in module boto.utils)

 	notify_workers() (boto.mturk.connection.MTurkConnection method)

 	now() (boto.sdb.db.property.DateProperty method)

 	(boto.sdb.db.property.DateTimeProperty method)

 	NullHandler (class in boto)

 	NumberHitsApprovedRequirement (class in boto.mturk.qualification)

 	NumberOfLinesSuggestion (class in boto.mturk.question)

 	NumericConstraint (class in boto.mturk.question)

O

 	
 	open() (boto.s3.key.Key method)

 	open_read() (boto.s3.key.Key method)

 	open_write() (boto.s3.key.Key method)

 	OPERATION_NAME (boto.mturk.notification.NotificationMessage attribute)

 	order() (boto.sdb.db.query.Query method)

 	
 	OrderedContent (class in boto.mturk.question)

 	OrdinaryCallingFormat (class in boto.s3.connection)

 	OTHER_SELECTION_ELEMENT_NAME (boto.mturk.question.SelectionAnswer attribute)

 	output (boto.utils.ShellCommand attribute)

 	Output (class in boto.cloudformation.stack)

 	Overview (class in boto.mturk.question)

P

 	
 	packages (boto.manage.server.Server attribute)

 	Parameter (class in boto.cloudformation.stack)

 	(class in boto.rds.parametergroup)

 	parameter_template (boto.mturk.question.Application attribute)

 	ParameterGroup (class in boto.rds.parametergroup)

 	parent() (boto.sdb.db.key.Key method)

 	parse_ts() (in module boto.utils)

 	Part (class in boto.s3.multipart)

 	part_lister() (in module boto.s3.multipart)

 	Password (class in boto.utils)

 	PasswordProperty (class in boto.sdb.db.property)

 	past_volume_ids (boto.manage.volume.Volume attribute)

 	pay() (boto.fps.connection.FPSConnection method)

 	PendingModifiedValues (class in boto.rds.dbinstance)

 	PercentAssignmentsAbandonedRequirement (class in boto.mturk.qualification)

 	PercentAssignmentsApprovedRequirement (class in boto.mturk.qualification)

 	PercentAssignmentsRejectedRequirement (class in boto.mturk.qualification)

 	PercentAssignmentsReturnedRequirement (class in boto.mturk.qualification)

 	PercentAssignmentsSubmittedRequirement (class in boto.mturk.qualification)

 	plugins (boto.manage.server.Server attribute)

 	Policy (class in boto.s3.acl)

 	poll() (boto.manage.task.TaskPoller method)

 	Prefix (class in boto.s3.prefix)

 	prefix_proxy_to_path() (boto.connection.AWSAuthConnection method)

 	Price (class in boto.mturk.price)

 	print_command_help() (boto.services.bs.BS method)

 	print_usage() (boto.sdb.connection.SDBConnection method)

 	private_hostname (boto.manage.server.Server attribute)

 	process_file() (boto.services.service.Service method)

 	(boto.services.sonofmmm.SonOfMMM method)

 	
 	process_record() (boto.services.result.ResultProcessor method)

 	ProcessingTime (boto.services.service.Service attribute)

 	ProcessType (class in boto.ec2.autoscale.group)

 	ProductCodes (class in boto.ec2.image)

 	production (boto.manage.server.Server attribute)

 	properties() (boto.sdb.db.model.Model class method)

 	Property (class in boto.sdb.db.property)

 	ProtocolIndependentOrdinaryCallingFormat (class in boto.s3.connection)

 	provider (boto.s3.key.Key attribute)

 	proxy_ssl() (boto.connection.AWSAuthConnection method)

 	publish() (boto.sns.SNSConnection method)

 	purchase() (boto.ec2.reservedinstance.ReservedInstancesOffering method)

 	purchase_reserved_instance_offering() (boto.ec2.connection.EC2Connection method)

 	put() (boto.connection.HostConnectionPool method)

 	(boto.dynamodb.item.Item method)

 	(boto.manage.server.Server method)

 	(boto.sdb.db.model.Model method)

 	put_attribute() (boto.dynamodb.item.Item method)

 	put_attributes() (boto.sdb.connection.SDBConnection method)

 	(boto.sdb.db.model.Model method)

 	(boto.sdb.domain.Domain method)

 	put_file() (boto.services.service.Service method)

 	put_group_policy() (boto.iam.connection.IAMConnection method)

 	put_http_connection() (boto.connection.AWSAuthConnection method)

 	(boto.connection.ConnectionPool method)

 	put_item() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	put_metric_alarm() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	put_metric_data() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	put_user_policy() (boto.iam.connection.IAMConnection method)

 	pythonize_name() (in module boto.utils)

Q

 	
 	Qualification (class in boto.mturk.connection)

 	QualificationRequest (class in boto.mturk.connection)

 	Qualifications (class in boto.mturk.qualification)

 	QualificationType (class in boto.mturk.connection)

 	Query (class in boto.sdb.db.query)

 	query() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	(boto.dynamodb.table.Table method)

 	(boto.ec2.cloudwatch.metric.Metric method)

 	(boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	
 	query_gql() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	query_lister() (in module boto.sdb.queryresultset)

 	QueryResultSet (class in boto.sdb.queryresultset)

 	QueryString (boto.gs.connection.GSConnection attribute)

 	(boto.s3.connection.S3Connection attribute)

 	Question (class in boto.mturk.question)

 	QuestionContent (class in boto.mturk.question)

 	QuestionForm (class in boto.mturk.question)

 	QuestionFormAnswer (class in boto.mturk.connection)

 	Queue (class in boto.sqs.queue)

 	queue_files() (boto.services.sonofmmm.SonOfMMM method)

R

 	
 	range_key (boto.dynamodb.item.Item attribute)

 	range_key_name (boto.dynamodb.item.Item attribute)

 	(boto.dynamodb.schema.Schema attribute)

 	range_key_type (boto.dynamodb.schema.Schema attribute)

 	RawMessage (class in boto.sqs.message)

 	RDSConnection (class in boto.rds)

 	read() (boto.s3.key.Key method)

 	(boto.sdb.db.blob.Blob method)

 	(boto.sqs.queue.Queue method)

 	read_message() (boto.services.service.Service method)

 	read_units (boto.dynamodb.table.Table attribute)

 	readline() (boto.sdb.db.blob.Blob method)

 	reboot() (boto.ec2.instance.Instance method)

 	(boto.manage.server.Server method)

 	(boto.rds.dbinstance.DBInstance method)

 	reboot_dbinstance() (boto.rds.RDSConnection method)

 	reboot_instances() (boto.ec2.connection.EC2Connection method)

 	receive_message() (boto.sqs.connection.SQSConnection method)

 	ReferenceProperty (class in boto.sdb.db.property)

 	refresh() (boto.dynamodb.table.Table method)

 	refund() (boto.fps.connection.FPSConnection method)

 	RegExConstraint (class in boto.mturk.question)

 	region_name (boto.manage.server.Server attribute)

 	(boto.manage.volume.Volume attribute)

 	regions() (in module boto.ec2)

 	(in module boto.ec2.autoscale)

 	(in module boto.ec2.cloudwatch)

 	(in module boto.ec2.elb)

 	(in module boto.rds)

 	(in module boto.sdb)

 	(in module boto.ses)

 	(in module boto.sns)

 	(in module boto.sqs)

 	(in module boto.sts)

 	register_hit_type() (boto.mturk.connection.MTurkConnection method)

 	register_image() (boto.ec2.connection.EC2Connection method)

 	register_instances() (boto.ec2.elb.ELBConnection method)

 	(boto.ec2.elb.loadbalancer.LoadBalancer method)

 	reject_assignment() (boto.mturk.connection.MTurkConnection method)

 	release() (boto.ec2.address.Address method)

 	release_address() (boto.ec2.connection.EC2Connection method)

 	reload() (boto.sdb.db.model.Model method)

 	remove_launch_permissions() (boto.ec2.image.Image method)

 	remove_permission() (boto.sns.SNSConnection method)

 	(boto.sqs.connection.SQSConnection method)

 	(boto.sqs.queue.Queue method)

 	remove_rule() (boto.ec2.securitygroup.SecurityGroup method)

 	remove_tag() (boto.ec2.ec2object.TaggedEC2Object method)

 	remove_user_from_group() (boto.iam.connection.IAMConnection method)

 	Request (class in boto.ec2.autoscale.request)

 	request_spot_instances() (boto.ec2.connection.EC2Connection method)

 	Requirement (class in boto.mturk.qualification)

 	Reservation (class in boto.ec2.instance)

 	ReservedInstance (class in boto.ec2.reservedinstance)

 	
 	ReservedInstancesOffering (class in boto.ec2.reservedinstance)

 	reset() (boto.sdb.db.manager.xmlmanager.XMLManager method)

 	reset_attribute() (boto.ec2.instance.Instance method)

 	reset_cmdshell() (boto.manage.server.Server method)

 	reset_image_attribute() (boto.ec2.connection.EC2Connection method)

 	reset_instance_attribute() (boto.ec2.connection.EC2Connection method)

 	reset_launch_attributes() (boto.ec2.image.Image method)

 	reset_parameter_group() (boto.rds.RDSConnection method)

 	reset_permissions() (boto.ec2.snapshot.Snapshot method)

 	reset_snapshot_attribute() (boto.ec2.connection.EC2Connection method)

 	ResponseError (boto.connection.AWSQueryConnection attribute)

 	(boto.dynamodb.layer1.Layer1 attribute)

 	(boto.ec2.connection.EC2Connection attribute)

 	(boto.emr.connection.EmrConnection attribute)

 	(boto.sdb.connection.SDBConnection attribute)

 	(boto.ses.connection.SESConnection attribute)

 	(boto.sqs.connection.SQSConnection attribute)

 	ResponseGroup (class in boto.ecs.item)

 	restore_dbinstance_from_dbsnapshot() (boto.rds.RDSConnection method)

 	restore_dbinstance_from_point_in_time() (boto.rds.RDSConnection method)

 	ResultEntry (class in boto.sqs.batchresults)

 	ResultProcessor (class in boto.services.result)

 	ResultSet (class in boto.resultset)

 	ResumableDownloadException

 	ResumableDownloadHandler (class in boto.s3.resumable_download_handler)

 	ResumableTransferDisposition (class in boto.exception)

 	ResumableUploadException

 	ResumableUploadHandler (class in boto.gs.resumable_upload_handler)

 	resume_processes() (boto.ec2.autoscale.AutoScaleConnection method)

 	(boto.ec2.autoscale.group.AutoScalingGroup method)

 	resync_mfa_device() (boto.iam.connection.IAMConnection method)

 	retry_url() (in module boto.utils)

 	RETRYABLE_EXCEPTIONS (boto.gs.resumable_upload_handler.ResumableUploadHandler attribute)

 	(boto.s3.resumable_download_handler.ResumableDownloadHandler attribute)

 	revoke() (boto.ec2.securitygroup.SecurityGroup method)

 	(boto.rds.dbsecuritygroup.DBSecurityGroup method)

 	revoke_dbsecurity_group() (boto.rds.RDSConnection method)

 	revoke_qualification() (boto.mturk.connection.MTurkConnection method)

 	revoke_security_group() (boto.ec2.connection.EC2Connection method)

 	(boto.rds.RDSConnection method)

 	revoke_security_group_deprecated() (boto.ec2.connection.EC2Connection method)

 	revoke_security_group_egress() (boto.ec2.connection.EC2Connection method)

 	Route53Connection (class in boto.route53.connection)

 	run() (boto.ec2.image.Image method)

 	(boto.manage.server.Server method)

 	(boto.manage.task.Task method)

 	(boto.pyami.scriptbase.ScriptBase method)

 	(boto.sdb.connection.ItemThread method)

 	(boto.sdb.domain.UploaderThread method)

 	(boto.utils.ShellCommand method)

 	run_instances() (boto.ec2.connection.EC2Connection method)

 	run_jobflow() (boto.emr.connection.EmrConnection method)

 	run_scripts() (boto.pyami.startup.Startup method)

 	RunJobFlowResponse (class in boto.emr.emrobject)

S

 	
 	S3Connection (class in boto.s3.connection)

 	S3CopyError

 	S3CreateError

 	S3DataError

 	S3KeyProperty (class in boto.sdb.db.property)

 	S3Origin (class in boto.cloudfront.origin)

 	S3PermissionsError

 	S3ResponseError

 	S3WebsiteEndpointTranslate (class in boto.s3.bucket)

 	SAEast (boto.s3.connection.Location attribute)

 	save() (boto.dynamodb.item.Item method)

 	(boto.ec2.keypair.KeyPair method)

 	(boto.sdb.db.model.Model method)

 	(boto.sdb.item.Item method)

 	(boto.sqs.queue.Queue method)

 	(boto.sts.credentials.Credentials method)

 	save_attributes() (boto.sdb.db.model.Model method)

 	save_list() (boto.sdb.db.manager.xmlmanager.XMLManager method)

 	save_object() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	save_option() (boto.pyami.config.Config method)

 	save_results() (boto.services.service.Service method)

 	save_system_option() (boto.pyami.config.Config method)

 	save_to_file() (boto.sqs.queue.Queue method)

 	save_to_filename() (boto.sqs.queue.Queue method)

 	save_to_s3() (boto.sqs.queue.Queue method)

 	save_user_option() (boto.pyami.config.Config method)

 	ScalingPolicy (class in boto.ec2.autoscale.policy)

 	scan() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	(boto.dynamodb.table.Table method)

 	ScheduledUpdateGroupAction (class in boto.ec2.autoscale.scheduled)

 	schema (boto.dynamodb.table.Table attribute)

 	Schema (class in boto.dynamodb.schema)

 	schema_url (boto.mturk.question.ExternalQuestion attribute)

 	(boto.mturk.question.FormattedContent attribute)

 	(boto.mturk.question.QuestionForm attribute)

 	Scope (class in boto.gs.acl)

 	ScriptBase (class in boto.pyami.scriptbase)

 	sdb (boto.sdb.db.manager.sdbmanager.SDBManager attribute)

 	SDBConnection (class in boto.sdb.connection)

 	SDBConverter (class in boto.sdb.db.manager.sdbmanager)

 	SDBManager (class in boto.sdb.db.manager.sdbmanager)

 	SDBPersistenceError

 	SDBResponseError

 	search_hits() (boto.mturk.connection.MTurkConnection method)

 	search_qualification_types() (boto.mturk.connection.MTurkConnection method)

 	secret_key (boto.connection.AWSAuthConnection attribute)

 	security_group (boto.manage.server.Server attribute)

 	SecurityGroup (class in boto.ec2.securitygroup)

 	select() (boto.sdb.connection.SDBConnection method)

 	(boto.sdb.domain.Domain method)

 	select_lister() (in module boto.sdb.queryresultset)

 	SELECTION_VALUE_XML_TEMPLATE (boto.mturk.question.SelectionAnswer attribute)

 	SELECTION_XML_TEMPLATE (boto.mturk.question.SelectionAnswer attribute)

 	SelectionAnswer (class in boto.mturk.question)

 	SELECTIONANSWER_XML_TEMPLATE (boto.mturk.question.SelectionAnswer attribute)

 	SelectResultSet (class in boto.sdb.queryresultset)

 	send_email() (boto.ses.connection.SESConnection method)

 	send_file() (boto.gs.resumable_upload_handler.ResumableUploadHandler method)

 	(boto.s3.key.Key method)

 	send_message() (boto.sqs.connection.SQSConnection method)

 	send_message_batch() (boto.sqs.connection.SQSConnection method)

 	send_raw_email() (boto.ses.connection.SESConnection method)

 	server (boto.manage.volume.Volume attribute)

 	Server (class in boto.manage.server)

 	SERVER_HAS_NOTHING (boto.gs.resumable_upload_handler.ResumableUploadHandler attribute)

 	server_name() (boto.connection.AWSAuthConnection method)

 	Service (class in boto.services.service)

 	SERVICE_NAME (boto.mturk.notification.NotificationMessage attribute)

 	ServiceDef (class in boto.services.servicedef)

 	ServiceMessage (class in boto.services.message)

 	ServiceName (boto.dynamodb.layer1.Layer1 attribute)

 	SESConnection (class in boto.ses.connection)

 	SessionExpiredError (boto.dynamodb.layer1.Layer1 attribute)

 	set() (boto.ecs.item.ResponseGroup method)

 	(boto.utils.Password method)

 	set_acl() (boto.gs.bucket.Bucket method)

 	(boto.s3.bucket.Bucket method)

 	(boto.s3.key.Key method)

 	set_alarm_state() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	set_as_logging_target() (boto.s3.bucket.Bucket method)

 	set_attribute() (boto.sqs.queue.Queue method)

 	set_body() (boto.contrib.ymlmessage.YAMLMessage method)

 	(boto.sqs.message.RawMessage method)

 	set_bucket_class() (boto.s3.connection.S3Connection method)

 	set_canned_acl() (boto.gs.bucket.Bucket method)

 	(boto.s3.bucket.Bucket method)

 	(boto.s3.key.Key method)

 	set_canned_acl_helper() (boto.gs.bucket.Bucket method)

 	set_capacity() (boto.ec2.autoscale.group.AutoScalingGroup method)

 	set_contents_from_file() (boto.file.key.Key method)

 	(boto.gs.key.Key method)

 	(boto.s3.key.Key method)

 	set_contents_from_filename() (boto.gs.key.Key method)

 	(boto.s3.key.Key method)

 	set_contents_from_stream() (boto.s3.key.Key method)

 	set_contents_from_string() (boto.gs.key.Key method)

 	(boto.s3.key.Key method)

 	set_def_acl() (boto.gs.bucket.Bucket method)

 	set_def_canned_acl() (boto.gs.bucket.Bucket method)

 	set_def_xml_acl() (boto.gs.bucket.Bucket method)

 	set_distribution_config() (boto.cloudfront.CloudFrontConnection method)

 	set_email_notification() (boto.mturk.connection.MTurkConnection method)

 	set_file_logger() (in module boto)

 	set_instance_health() (boto.ec2.autoscale.AutoScaleConnection method)

 	set_item_cls() (boto.sdb.connection.SDBConnection method)

 	set_key_class() (boto.s3.bucket.Bucket method)

 	set_key_value() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	set_launch_permissions() (boto.ec2.image.Image method)

 	set_lb_listener_SSL_certificate() (boto.ec2.elb.ELBConnection method)

 	set_lb_policies_of_listener() (boto.ec2.elb.ELBConnection method)

 	set_listener_SSL_certificate() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	set_manager() (boto.sdb.db.model.Model method)

 	set_message_class() (boto.sqs.queue.Queue method)

 	set_metadata() (boto.s3.key.Key method)

 	set_next_token() (boto.sdb.db.query.Query method)

 	set_origin_access_identity_config() (boto.cloudfront.CloudFrontConnection method)

 	set_permissions() (boto.cloudfront.distribution.Distribution method)

 	set_permissions_all() (boto.cloudfront.distribution.Distribution method)

 	set_policies_of_listener() (boto.ec2.elb.loadbalancer.LoadBalancer method)

 	set_policy() (boto.s3.bucket.Bucket method)

 	set_property() (boto.sdb.db.manager.sdbmanager.SDBManager method)

 	(boto.sdb.db.manager.xmlmanager.XMLManager method)

 	set_queue_attribute() (boto.sqs.connection.SQSConnection method)

 	set_request_payment() (boto.s3.bucket.Bucket method)

 	set_rest_notification() (boto.mturk.connection.MTurkConnection method)

 	set_reviewing() (boto.mturk.connection.MTurkConnection method)

 	set_stream_logger() (in module boto)

 	set_streaming_distribution_config() (boto.cloudfront.CloudFrontConnection method)

 	set_subresource() (boto.s3.bucket.Bucket method)

 	set_termination_protection() (boto.emr.connection.EmrConnection method)

 	set_timeout() (boto.sqs.queue.Queue method)

 	set_topic_attributes() (boto.sns.SNSConnection method)

 	set_value() (boto.rds.parametergroup.Parameter method)

 	set_xml_acl() (boto.s3.bucket.Bucket method)

 	(boto.s3.key.Key method)

 	setbool() (boto.pyami.config.Config method)

 	setReadOnly() (boto.utils.ShellCommand method)

 	settle() (boto.fps.connection.FPSConnection method)

 	setup_vhost() (boto.pyami.installers.ubuntu.trac.Trac method)

 	share() (boto.ec2.snapshot.Snapshot method)

 	ShellCommand (class in boto.utils)

 	shutdown() (boto.services.service.Service method)

 	(boto.services.sonofmmm.SonOfMMM method)

 	shutdown_instances() (boto.ec2.autoscale.group.AutoScalingGroup method)

 	SimpleField (class in boto.mturk.question)

 	SimpleResultSet (class in boto.file.simpleresultset)

 	size (boto.manage.volume.Volume attribute)

 	(boto.sdb.db.blob.Blob attribute)

 	size() (boto.connection.ConnectionPool method)

 	(boto.connection.HostConnectionPool method)

 	size_bytes (boto.dynamodb.table.Table attribute)

 	Snapshot (class in boto.ec2.snapshot)

 	snapshot() (boto.manage.volume.Volume method)

 	(boto.rds.dbinstance.DBInstance method)

 	SnapshotAttribute (class in boto.ec2.snapshot)

 	snapshots() (boto.ec2.volume.Volume method)

 	SNSConnection (class in boto.sns)

 	SonOfMMM (class in boto.services.sonofmmm)

 	split_key() (boto.services.service.Service method)

 	SQSConnection (class in boto.sqs.connection)

 	SQSDecodeError

 	SQSError

 	SQSRegionInfo (class in boto.sqs.regioninfo)

 	Stack (class in boto.cloudformation.stack)

 	StackEvent (class in boto.cloudformation.stack)

 	StackResource (class in boto.cloudformation.stack)

 	StackResourceSummary (class in boto.cloudformation.stack)

 	StackSummary (class in boto.cloudformation.stack)

 	STALE_DURATION (boto.connection.ConnectionPool attribute)

 	start() (boto.ec2.instance.Instance method)

 	(boto.manage.task.Task method)

 	(boto.pyami.installers.Installer method)

 	(boto.pyami.installers.ubuntu.installer.Installer method)

 	
 	start_all() (boto.manage.task.Task class method)

 	start_instances() (boto.ec2.connection.EC2Connection method)

 	START_OVER (boto.exception.ResumableTransferDisposition attribute)

 	startElement() (boto.cloudformation.stack.Output method)

 	(boto.cloudformation.stack.Parameter method)

 	(boto.cloudformation.stack.Stack method)

 	(boto.cloudformation.stack.StackEvent method)

 	(boto.cloudformation.stack.StackResource method)

 	(boto.cloudformation.stack.StackResourceSummary method)

 	(boto.cloudformation.stack.StackSummary method)

 	(boto.cloudformation.template.Template method)

 	(boto.cloudformation.template.TemplateParameter method)

 	(boto.cloudfront.distribution.Distribution method)

 	(boto.cloudfront.distribution.DistributionConfig method)

 	(boto.cloudfront.distribution.DistributionSummary method)

 	(boto.cloudfront.distribution.StreamingDistribution method)

 	(boto.cloudfront.origin.CustomOrigin method)

 	(boto.cloudfront.origin.S3Origin method)

 	(boto.ec2.autoscale.activity.Activity method)

 	(boto.ec2.autoscale.group.AutoScalingGroup method)

 	(boto.ec2.autoscale.group.AutoScalingGroupMetric method)

 	(boto.ec2.autoscale.group.EnabledMetric method)

 	(boto.ec2.autoscale.group.ProcessType method)

 	(boto.ec2.autoscale.group.SuspendedProcess method)

 	(boto.ec2.autoscale.instance.Instance method)

 	(boto.ec2.autoscale.launchconfig.BlockDeviceMapping method)

 	(boto.ec2.autoscale.launchconfig.Ebs method)

 	(boto.ec2.autoscale.launchconfig.InstanceMonitoring method)

 	(boto.ec2.autoscale.launchconfig.LaunchConfiguration method)

 	(boto.ec2.autoscale.policy.AdjustmentType method)

 	(boto.ec2.autoscale.policy.Alarm method)

 	(boto.ec2.autoscale.policy.MetricCollectionTypes method)

 	(boto.ec2.autoscale.policy.MetricCollectionTypes.BaseType method)

 	(boto.ec2.autoscale.policy.ScalingPolicy method)

 	(boto.ec2.autoscale.request.Request method)

 	(boto.ec2.autoscale.scheduled.ScheduledUpdateGroupAction method)

 	(boto.ec2.cloudwatch.datapoint.Datapoint method)

 	(boto.ec2.cloudwatch.metric.Metric method)

 	(boto.ec2.ec2object.EC2Object method)

 	(boto.ec2.ec2object.TaggedEC2Object method)

 	(boto.ec2.elb.healthcheck.HealthCheck method)

 	(boto.ec2.elb.instancestate.InstanceState method)

 	(boto.ec2.elb.listelement.ListElement method)

 	(boto.ec2.elb.listener.Listener method)

 	(boto.ec2.elb.loadbalancer.LoadBalancer method)

 	(boto.ec2.image.Image method)

 	(boto.ec2.image.ImageAttribute method)

 	(boto.ec2.image.ProductCodes method)

 	(boto.ec2.instance.ConsoleOutput method)

 	(boto.ec2.instance.Group method)

 	(boto.ec2.instance.Instance method)

 	(boto.ec2.instance.InstanceAttribute method)

 	(boto.ec2.instance.Reservation method)

 	(boto.ec2.instance.SubParse method)

 	(boto.ec2.instanceinfo.InstanceInfo method)

 	(boto.ec2.instancestatus.Details method)

 	(boto.ec2.instancestatus.Event method)

 	(boto.ec2.instancestatus.EventSet method)

 	(boto.ec2.instancestatus.InstanceStatus method)

 	(boto.ec2.instancestatus.InstanceStatusSet method)

 	(boto.ec2.instancestatus.Status method)

 	(boto.ec2.reservedinstance.ReservedInstancesOffering method)

 	(boto.ec2.securitygroup.GroupOrCIDR method)

 	(boto.ec2.securitygroup.IPPermissions method)

 	(boto.ec2.securitygroup.IPPermissionsList method)

 	(boto.ec2.securitygroup.SecurityGroup method)

 	(boto.ec2.snapshot.SnapshotAttribute method)

 	(boto.ec2.volume.AttachmentSet method)

 	(boto.ec2.volume.Volume method)

 	(boto.ec2.zone.MessageSet method)

 	(boto.ec2.zone.Zone method)

 	(boto.ecs.item.ItemSet method)

 	(boto.ecs.item.ResponseGroup method)

 	(boto.emr.emrobject.BootstrapAction method)

 	(boto.emr.emrobject.EmrObject method)

 	(boto.emr.emrobject.JobFlow method)

 	(boto.emr.emrobject.Step method)

 	(boto.exception.BotoServerError method)

 	(boto.exception.ConsoleOutput method)

 	(boto.exception.EC2ResponseError method)

 	(boto.exception.SQSError method)

 	(boto.exception.StorageResponseError method)

 	(boto.gs.acl.ACL method)

 	(boto.gs.acl.Entries method)

 	(boto.gs.acl.Entry method)

 	(boto.gs.acl.Scope method)

 	(boto.gs.user.User method)

 	(boto.handler.XmlHandler method)

 	(boto.iam.summarymap.SummaryMap method)

 	(boto.mturk.connection.BaseAutoResultElement method)

 	(boto.mturk.price.Price method)

 	(boto.rds.dbinstance.DBInstance method)

 	(boto.rds.dbinstance.PendingModifiedValues method)

 	(boto.rds.dbsecuritygroup.DBSecurityGroup method)

 	(boto.rds.dbsecuritygroup.EC2SecurityGroup method)

 	(boto.rds.dbsecuritygroup.IPRange method)

 	(boto.rds.dbsnapshot.DBSnapshot method)

 	(boto.rds.event.Event method)

 	(boto.rds.parametergroup.Parameter method)

 	(boto.rds.parametergroup.ParameterGroup method)

 	(boto.resultset.BooleanResult method)

 	(boto.resultset.ResultSet method)

 	(boto.route53.hostedzone.HostedZone method)

 	(boto.s3.acl.ACL method)

 	(boto.s3.acl.Grant method)

 	(boto.s3.acl.Policy method)

 	(boto.s3.bucket.Bucket method)

 	(boto.s3.deletemarker.DeleteMarker method)

 	(boto.s3.key.Key method)

 	(boto.s3.multipart.CompleteMultiPartUpload method)

 	(boto.s3.multipart.MultiPartUpload method)

 	(boto.s3.multipart.Part method)

 	(boto.s3.prefix.Prefix method)

 	(boto.s3.user.User method)

 	(boto.sdb.domain.Domain method)

 	(boto.sdb.domain.DomainDumpParser method)

 	(boto.sdb.domain.DomainMetaData method)

 	(boto.sdb.item.Item method)

 	(boto.sqs.attributes.Attributes method)

 	(boto.sqs.batchresults.BatchResults method)

 	(boto.sqs.batchresults.ResultEntry method)

 	(boto.sqs.message.RawMessage method)

 	(boto.sqs.queue.Queue method)

 	(boto.sts.credentials.Credentials method)

 	(boto.sts.credentials.FederationToken method)

 	(boto.vpc.dhcpoptions.DhcpConfigSet method)

 	(boto.vpc.dhcpoptions.DhcpOptions method)

 	(boto.vpc.dhcpoptions.DhcpValueSet method)

 	(boto.vpc.vpngateway.Attachment method)

 	(boto.vpc.vpngateway.VpnGateway method)

 	Startup (class in boto.pyami.startup)

 	Statistics (boto.ec2.cloudwatch.metric.Metric attribute)

 	status (boto.dynamodb.table.Table attribute)

 	(boto.manage.server.Server attribute)

 	(boto.utils.ShellCommand attribute)

 	Status (class in boto.ec2.instancestatus)

 	Step (class in boto.emr.emrobject)

 	(class in boto.emr.step)

 	stop() (boto.ec2.instance.Instance method)

 	(boto.manage.server.Server method)

 	(boto.pyami.installers.Installer method)

 	(boto.pyami.installers.ubuntu.installer.Installer method)

 	(boto.rds.dbinstance.DBInstance method)

 	stop_all() (boto.ec2.instance.Reservation method)

 	stop_instances() (boto.ec2.connection.EC2Connection method)

 	storage_uri() (in module boto)

 	storage_uri_for_key() (in module boto)

 	StorageCopyError

 	StorageCreateError

 	StorageDataError

 	StoragePermissionsError

 	StorageResponseError

 	StreamingDistribution (class in boto.cloudfront.distribution)

 	StreamingDistributionConfig (class in boto.cloudfront.distribution)

 	StreamingDistributionSummary (class in boto.cloudfront.distribution)

 	StreamingStep (class in boto.emr.step)

 	StringProperty (class in boto.sdb.db.property)

 	STSConnection (class in boto.sts)

 	STYLE_XML_TEMPLATE (boto.mturk.question.SelectionAnswer attribute)

 	SubdomainCallingFormat (class in boto.s3.connection)

 	submit() (boto.dynamodb.batch.BatchList method)

 	submit_file() (boto.services.submit.Submitter method)

 	submit_path() (boto.services.submit.Submitter method)

 	Submitter (class in boto.services.submit)

 	Subnet (class in boto.vpc.subnet)

 	SubParse (class in boto.ec2.instance)

 	subscribe() (boto.sns.SNSConnection method)

 	subscribe_sqs_queue() (boto.sns.SNSConnection method)

 	SummaryMap (class in boto.iam.summarymap)

 	suspend_processes() (boto.ec2.autoscale.AutoScaleConnection method)

 	(boto.ec2.autoscale.group.AutoScalingGroup method)

 	SuspendedProcess (class in boto.ec2.autoscale.group)

T

 	
 	Table (class in boto.dynamodb.table)

 	TaggedEC2Object (class in boto.ec2.ec2object)

 	Task (class in boto.manage.task)

 	TaskPoller (class in boto.manage.task)

 	template (boto.mturk.question.AnswerSpecification attribute)

 	(boto.mturk.question.Application attribute)

 	(boto.mturk.question.Binary attribute)

 	(boto.mturk.question.Constraints attribute)

 	(boto.mturk.question.ExternalQuestion attribute)

 	(boto.mturk.question.FileUploadAnswer attribute)

 	(boto.mturk.question.FormattedContent attribute)

 	(boto.mturk.question.FreeTextAnswer attribute)

 	(boto.mturk.question.LengthConstraint attribute)

 	(boto.mturk.question.NumberOfLinesSuggestion attribute)

 	(boto.mturk.question.NumericConstraint attribute)

 	(boto.mturk.question.Overview attribute)

 	(boto.mturk.question.Question attribute)

 	(boto.mturk.question.QuestionContent attribute)

 	(boto.mturk.question.RegExConstraint attribute)

 	(boto.mturk.question.SimpleField attribute)

 	Template (class in boto.cloudformation.template)

 	TemplateParameter (class in boto.cloudformation.template)

 	terminate() (boto.ec2.instance.Instance method)

 	(boto.manage.server.Server method)

 	terminate_instance() (boto.ec2.autoscale.AutoScaleConnection method)

 	terminate_instances() (boto.ec2.connection.EC2Connection method)

 	terminate_jobflow() (boto.emr.connection.EmrConnection method)

 	terminate_jobflows() (boto.emr.connection.EmrConnection method)

 	TextProperty (class in boto.sdb.db.property)

 	ThruputError (boto.dynamodb.layer1.Layer1 attribute)

 	TimeDecodeError

 	TimeProperty (class in boto.sdb.db.property)

 	to_boolean() (boto.resultset.BooleanResult method)

 	(boto.resultset.ResultSet method)

 	to_dict() (boto.sdb.db.model.Model method)

 	(boto.sts.credentials.Credentials method)

 	to_xml() (boto.cloudfront.distribution.DistributionConfig method)

 	(boto.cloudfront.distribution.StreamingDistributionConfig method)

 	(boto.cloudfront.origin.CustomOrigin method)

 	(boto.cloudfront.origin.S3Origin method)

 	(boto.ecs.item.ItemSet method)

 	(boto.ecs.item.ResponseGroup method)

 	(boto.gs.acl.ACL method)

 	(boto.gs.acl.Entries method)

 	(boto.gs.acl.Entry method)

 	(boto.gs.acl.Scope method)

 	(boto.gs.user.User method)

 	(boto.s3.acl.ACL method)

 	(boto.s3.acl.Grant method)

 	(boto.s3.acl.Policy method)

 	(boto.s3.multipart.MultiPartUpload method)

 	(boto.s3.user.User method)

 	(boto.sdb.db.model.Model method)

 	(boto.sdb.db.query.Query method)

 	(boto.sdb.domain.Domain method)

 	
 	TooManyAuthHandlerReadyToAuthenticate

 	Trac (class in boto.pyami.installers.ubuntu.trac)

 	trans_region (boto.s3.bucket.S3WebsiteEndpointTranslate attribute)

 	translate_region() (boto.s3.bucket.S3WebsiteEndpointTranslate class method)

 	trim_snapshots() (boto.ec2.connection.EC2Connection method)

 	(boto.manage.volume.Volume method)

 	type_name (boto.sdb.db.property.BlobProperty attribute)

 	(boto.sdb.db.property.BooleanProperty attribute)

 	(boto.sdb.db.property.DateProperty attribute)

 	(boto.sdb.db.property.DateTimeProperty attribute)

 	(boto.sdb.db.property.FloatProperty attribute)

 	(boto.sdb.db.property.IntegerProperty attribute)

 	(boto.sdb.db.property.ListProperty attribute)

 	(boto.sdb.db.property.LongProperty attribute)

 	(boto.sdb.db.property.MapProperty attribute)

 	(boto.sdb.db.property.PasswordProperty attribute)

 	(boto.sdb.db.property.Property attribute)

 	(boto.sdb.db.property.ReferenceProperty attribute)

 	(boto.sdb.db.property.S3KeyProperty attribute)

 	(boto.sdb.db.property.StringProperty attribute)

 	(boto.sdb.db.property.TextProperty attribute)

 	(boto.sdb.db.property.TimeProperty attribute)

U

 	
 	umount() (boto.pyami.scriptbase.ScriptBase method)

 	unblock_worker() (boto.mturk.connection.MTurkConnection method)

 	unfreeze() (boto.manage.volume.Volume method)

 	Units (boto.ec2.cloudwatch.metric.Metric attribute)

 	unmarshal_object() (boto.sdb.db.manager.xmlmanager.XMLManager method)

 	unmarshal_props() (boto.sdb.db.manager.xmlmanager.XMLManager method)

 	unmonitor() (boto.ec2.instance.Instance method)

 	unmonitor_instance() (boto.ec2.connection.EC2Connection method)

 	unmonitor_instances() (boto.ec2.connection.EC2Connection method)

 	unquote_v() (in module boto.utils)

 	unshare() (boto.ec2.snapshot.Snapshot method)

 	unsubscribe() (boto.sns.SNSConnection method)

 	update() (boto.cloudformation.stack.Stack method)

 	(boto.cloudfront.distribution.Distribution method)

 	(boto.cloudfront.distribution.StreamingDistribution method)

 	(boto.ec2.autoscale.group.AutoScalingGroup method)

 	(boto.ec2.elb.healthcheck.HealthCheck method)

 	(boto.ec2.image.Image method)

 	(boto.ec2.instance.Instance method)

 	(boto.ec2.snapshot.Snapshot method)

 	(boto.ec2.volume.Volume method)

 	(boto.rds.dbinstance.DBInstance method)

 	(boto.sqs.message.MHMessage method)

 	update_access_key() (boto.iam.connection.IAMConnection method)

 	update_alarm() (boto.ec2.cloudwatch.CloudWatchConnection method)

 	update_dme() (in module boto.utils)

 	
 	update_from_response() (boto.dynamodb.table.Table method)

 	update_fstab() (boto.pyami.installers.ubuntu.ebs.EBSInstaller method)

 	update_group() (boto.iam.connection.IAMConnection method)

 	update_item() (boto.dynamodb.layer1.Layer1 method)

 	(boto.dynamodb.layer2.Layer2 method)

 	update_login_profile() (boto.iam.connection.IAMConnection method)

 	update_metadata() (boto.s3.key.Key method)

 	update_qualification_score() (boto.mturk.connection.MTurkConnection method)

 	update_qualification_type() (boto.mturk.connection.MTurkConnection method)

 	update_server_cert() (boto.iam.connection.IAMConnection method)

 	update_signing_cert() (boto.iam.connection.IAMConnection method)

 	update_table() (boto.dynamodb.layer1.Layer1 method)

 	update_throughput() (boto.dynamodb.layer2.Layer2 method)

 	(boto.dynamodb.table.Table method)

 	update_user() (boto.iam.connection.IAMConnection method)

 	upload_bundle() (boto.manage.server.Bundler method)

 	upload_part_from_file() (boto.s3.multipart.MultiPartUpload method)

 	upload_server_cert() (boto.iam.connection.IAMConnection method)

 	upload_signing_cert() (boto.iam.connection.IAMConnection method)

 	UploaderThread (class in boto.sdb.domain)

 	Usage (boto.services.bs.BS attribute)

 	usage() (in module boto.pyami.launch_ami)

 	use_ip() (boto.ec2.instance.Instance method)

 	User (class in boto.gs.user)

 	(class in boto.s3.user)

 	USWest (boto.s3.connection.Location attribute)

V

 	
 	valid_states (boto.cloudformation.stack.StackEvent attribute)

 	ValidApplyMethods (boto.rds.parametergroup.Parameter attribute)

 	ValidApplyTypes (boto.rds.parametergroup.Parameter attribute)

 	validate() (boto.mturk.question.ValidatingXML method)

 	(boto.sdb.db.property.DateProperty method)

 	(boto.sdb.db.property.DateTimeProperty method)

 	(boto.sdb.db.property.FloatProperty method)

 	(boto.sdb.db.property.IntegerProperty method)

 	(boto.sdb.db.property.ListProperty method)

 	(boto.sdb.db.property.LongProperty method)

 	(boto.sdb.db.property.MapProperty method)

 	(boto.sdb.db.property.PasswordProperty method)

 	(boto.sdb.db.property.Property method)

 	(boto.sdb.db.property.ReferenceProperty method)

 	(boto.sdb.db.property.S3KeyProperty method)

 	(boto.sdb.db.property.TextProperty method)

 	(boto.sdb.db.property.TimeProperty method)

 	validate_regex (boto.sdb.db.property.S3KeyProperty attribute)

 	validate_string() (in module boto.sdb.db.property)

 	ValidatingXML (class in boto.mturk.question)

 	ValidSources (boto.rds.parametergroup.Parameter attribute)

 	ValidTypes (boto.rds.parametergroup.Parameter attribute)

 	ValidValues (boto.ec2.instance.InstanceAttribute attribute)

 	
 	value (boto.rds.parametergroup.Parameter attribute)

 	values() (boto.sqs.message.MHMessage method)

 	verbose_name (boto.sdb.db.property.Property attribute)

 	verify() (boto.mturk.notification.NotificationMessage method)

 	verify_email_address() (boto.ses.connection.SESConnection method)

 	verify_signature() (boto.fps.connection.FPSConnection method)

 	Version (boto.cloudfront.CloudFrontConnection attribute)

 	(boto.dynamodb.layer1.Layer1 attribute)

 	(boto.route53.connection.Route53Connection attribute)

 	versioned_bucket_lister() (in module boto.s3.bucketlistresultset)

 	VersionedBucketListResultSet (class in boto.s3.bucketlistresultset)

 	VersioningBody (boto.s3.bucket.Bucket attribute)

 	VersionRE (boto.s3.bucket.Bucket attribute)

 	VHostCallingFormat (class in boto.s3.connection)

 	Volume (class in boto.ec2.volume)

 	(class in boto.manage.volume)

 	volume_id (boto.manage.volume.Volume attribute)

 	volume_state (boto.manage.volume.Volume attribute)

 	volume_state() (boto.ec2.volume.Volume method)

 	VPC (class in boto.vpc.vpc)

 	VPCConnection (class in boto.vpc)

 	VpnConnection (class in boto.vpc.vpnconnection)

 	VpnGateway (class in boto.vpc.vpngateway)

W

 	
 	wait() (boto.manage.server.Server method)

 	(boto.manage.volume.Volume method)

 	WAIT_BEFORE_RETRY (boto.exception.ResumableTransferDisposition attribute)

 	WebsiteBody (boto.s3.bucket.Bucket attribute)

 	WebsiteErrorFragment (boto.s3.bucket.Bucket attribute)

 	
 	write() (boto.sqs.queue.Queue method)

 	write_message() (boto.services.service.Service method)

 	(boto.services.submit.Submitter method)

 	write_metadata() (boto.pyami.bootstrap.Bootstrap method)

 	write_mime_multipart() (in module boto.utils)

 	write_units (boto.dynamodb.table.Table attribute)

X

 	
 	xml_template (boto.mturk.question.QuestionForm attribute)

 	XMLConverter (class in boto.sdb.db.manager.xmlmanager)

 	XmlHandler (class in boto.handler)

 	
 	XMLManager (class in boto.sdb.db.manager.xmlmanager)

 	XMLNameSpace (boto.route53.connection.Route53Connection attribute)

 	XMLTemplate (class in boto.mturk.question)

Y

 	
 	YAMLMessage (class in boto.contrib.ymlmessage)

Z

 	
 	zone (boto.manage.server.Server attribute)

 	
 	Zone (class in boto.ec2.zone)

 	zone_name (boto.manage.volume.Volume attribute)

 _static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		boto: A Python interface to Amazon Web Services

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

